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Abstract— This paper introduces a cost-effective and high
speed approach for predicting a 2-DOF bend parameterization
for soft bodies through a magnetic and constant curvature
system. We propose a design for a probabilistic particle filter
that can be paired with magnetic simulations to produce highly
accurate and fast pose information for parameter-constrained
magnets. We include the design, fabrication, modeling, and
experimental results of a physical sensor with the ability to
produce both bend directionality and bend magnitude results
with a speed of ∼60Hz. The proposed design consists of a
magnet and tri-axis Hall effect sensor embedded in a soft
silicone body. We demonstrate the effectiveness of this system
through real-world interaction tests.

I. INTRODUCTION

There are many techniques for proprioception in soft

robotics, however there is not a standard for any applica-

tion due to each technique’s respective drawbacks. Optical

fiber proprioception produces high quality results with quick

update frequency, but these systems are often high in cost

or equipment requirements [1]. Development and execution

require complex custom circuits for optical fiber cable read-

ing or high quality cameras with high refresh rate. Vision

proprioception can also produce highly accurate results,

however it usually requires expensive depth-sensing cameras

and a hollow body for non-occluded sight to the vision

targets [2]. Conversely, resistive bend sensors are low-cost

and easy to manufacture, but the readings can result in drift

over time and temperatures [3]. Capacitive sensors address

many of these concerns [4]; unfortunately both resistive and

capacitive modalities still affect the mechanical behaviour of

the soft body in which they are mounted.

These drawbacks demonstrate that there is a need for a

pose sensing option that offers real-time shape measure-

ment without affecting the bending response of soft robotic

structures. Our solution provides a probabilistic approach for

predicting magnet pose in a parameterized body through the

use of as little as one Hall Effect IC. One such example

of this application is demonstrated in Figure 1. This figure

shows the filter predicting the pose of a 2-degree-of-freedom

(DOF) bending module. This prediction was done using a

single embedded Hall Effect IC sensor and cuboid magnet.
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Fig. 1. 1. Depicts sensor module components embedded in silicone cylinder
created through a multi-step molding process. 2. Shows a modified sensor
module embedded in a soft 2-DOF module, able to handle delicate objects.

One advantage of embedded magnets for proprioception

is that their presence minimally effects the properties of the

surrounding material, as no sensor deformation is required

for readings. The magnets can even be mounted where there

is no physical connection between the electrical components

and the body that requires sensing. These sorts of applica-

tions are already demonstrated in industry to robustly solve

a multitude of rigid sensor tasks such as encoders and force

sensors.

There is previous work utilizing magnets for pose esti-

mation using a minimal number of Hall Effect sensors [5],

[6]. These efforts employ mapping the entire workspace and

using lookup tables for 1-DOF bend estimation. This process

is unfortunately too slow for use in closed-loop control and

would be reduced in speed exponentially for increased DOF

applications.

One field that has heavily explored soft-bodied magnet

proprioception is endoscopy [7], [8], [9], [10]. Endoscope

research includes an impressive body of magnetic pose

estimation work. However many methods proposed to predict

the pose of the magnet utilize large arrays of Hall Effect

sensors. Likewise, these solutions consist of highly complex

algorithms designed to produce clear results in very con-

trolled environments.

This paper introduces a novel probabilistic technique for 2-

DOF applications that overcomes many of the drawbacks of

these other systems. By implementing a single Hall Effect IC

paired with a particle filter, this method allows for magnetic

pose estimation in a multitude of applications for multi-

DOF constraints. Particle filters provide several advantages

over directly inverting the magnetic field equations. They

do not generally require solving multidimensional nonlinear

2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
August 23-27, 2021. Lyon, France

978-0-7381-2503-9/21/$31.00 ©2021 IEEE 215

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 08,2021 at 15:29:47 UTC from IEEE Xplore.  Restrictions apply.



Fig. 2. Basic model of embedded magnet and Hall effect sensor in silicone
cylinder at multiple positions. The magnetic flux field lines generated by
the magnet are the same but interact differently with the sensor in different
orientations. On the left is a silicone cylinder with bend angle 0; the right
has a silicone cylinder with bend angle ϕ.

equations. Particle filters also inform their estimates based

on recent history, improving stability. The computations

represent a unique approach to magnetic pose estimation that

can be applied to future tasks consisting of multiple magnetic

components and sensors. These sets of magnet and sensor

combinations could be arranged in a multitude of structures,

such as a touch-sensitive plane, or a chain.

II. MODELING

We estimate the curvature of a soft body using an embed-

ded Hall effect sensor and magnet. As the soft body bends,

the relative locations and orientations of the magnet and Hall

effect sensor change. This relative change then impacts the

measured magnetic field as shown in Figure 2.

Unfortunately it is not easy to convert magnetic field

strength measurements directly into a relative locations of

the magnet and sensor. Although we focused on a soft

body containing a single sensor-magnet pair, the calculations

necessary to directly solve a chain of several interacting

sensor-magnet pairs are nearly intractable. To sidestep this

difficulty we use a particle filter linked to a magnetic field

simulation.

A particle filter is a stochastic algorithm which operates

on a set of particles each representing a possible state of a

system [11], [12]. Each particle is associated with a single

state within a given iteration of the algorithm. Kalman filters

are closely related, being a special case optimization for

linear Gaussian systems.

Particle filters use information from the recent past to

improve the location estimate and to help describe the

precision of the estimate. The past information or a priori

belief about the true state of the system is incorporated

through the initial distribution of particles at the beginning of

each iteration. Each particle is assigned a probability based

on how consistent it is with the measured magnetic field.

The ensemble of particles is used to predict a single state

and then the distribution of particles is updated to cancel

out the particle probabilities. The result is the same as mul-

tiplying the particle distribution by the particle probability

distribution and then normalizing.

Fig. 3. A depiction of the parameter space containing all possible bend
angle ϕ and direction θ combinations. The red dot represents one possible
state.

The accuracy of the predicted location and the distri-

butions is dependent on the number of particles in the

filter, the correctness of the internal model, and noise. The

number of particles in the filter can be decreased to reduce

computational requirements at the cost of accuracy.
We assume that when bent, the soft body module has a

constant curvature. We describe its state using two parame-

ters: bend direction and bend angle. The bend angle ϕ is the

angle of the soft body interpreted as an arc of a circle. The

bend direction θ is the angle between the body projected into

the XY plane and the X axis. The bend angle is bounded

to be in the interval from 0 to π/2. Figure 3 contains a

representation of the bend direction and bend angles in a

parameter space. Each particle in the particle filter stores

a state made up of these two parameters. The collection

of particles in the particle filter represents a collection of

possible states for the soft body module.

A. Weighting
There are several steps in the particle filter. The first is to

assign weights to each particle. These weights or likelihoods

represent an un-normalized probability of that particle’s state

being correct given the Hall effect sensor readings.
For each particle (using their states) a predicted magnetic

field is calculated along with Hall effect sensor measure-

ments [13], [14]. These simulated magnetic flux measure-

ments are compared to the measurements from reality. Parti-

cles with modeled measurements closer to the experimental

measurements have a higher likelihood. Let �x be the pre-

dicted measurements, �y be the actual measurements, and

σ be a scaling constant. For simplicity we use a normal

distribution for the likelihood function:

L(�x | �y) = exp

(
−||�x− �y||22

σ2

)
. (1)

After calculating the likelihoods, they are normalized to

form weights which sum to 1. This step reduces numerical
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Fig. 4. Each path is defined by the parametric curves listed in Equations 5 (Spiral), 6 (Flower), and 7 (Seagull). Each equation is plotted in polar
coordinates using bend direction as the angle and bend angle as the radius. For each equation, the maximum radius is 1 as to fully avoid the π

2
bound

placed on bend angle.

errors in later steps, improves reliability, and allows the

weights to be interpreted as probabilities. We calculate the

sum of all of the particle likelihoods Z and then divide each

likelihood by that sum. Both calculating and applying the

normalization factor has to be handled carefully to avoid

large numerical errors. We use a LogSumExp function to

calculate Z. This normalization factor is applied to the

likelihoods by subtracting inside the exponent:

P(�x | �y) = exp

(
−||�x− �y||22

σ2
− ln(Z)

)
. (2)

B. Predicting

After associating each potential particle with a probabil-

ity, we calculate a single point estimate prediction. This

prediction is our best guess of the true state based on the

information contained in each of the particles.

We found that the point estimate was more accurate in

simulation if it was only based on the 10 percent of particles

with the highest probability. We took an average of the states

of these high probability particles as the predicted state. The

10 percent cutoff worked sufficiently well for all of our tests.

Suppose that S is the set of states with the highest 10

percent of probabilities. Let θs, ϕs, and ps be the bend

direction, bend angle, and probability of a state s ∈ S. The

predicted bend direction θ̂ and bend angle ϕ̂ are

θ̂ = atan2

(∑
s∈S

sin(θs),
∑
s∈S

cos(θs)

)
(3)

and

ϕ̂ =

∑
s∈S ϕs

|S| . (4)

The bend angle ϕ̂ must be between 0 and π/2, so a standard

average is appropriate. However, because the bend direction

θ̂ can be any angle, we use a circular mean to avoid boundary

issues near 0 and 2π. We chose to use unweighted averages

as we did not observe any further benefits from weighting

states based on their probabilities.

C. Resampling

Resampling the particles is vital for exploring the state

space and keeps the particle filter from becoming less

efficient over time. The distribution of particle states is

adjusted to incorporate the particle probabilities. Regions of

the state space which have low probability given the sensor

measurements lose particles, and high probability regions

gain particles. After resampling, the distribution of particle

states captures our belief about the state of the physical

system given all current and past measurements.

Let N be the number of particles in the particle filter.

Using random sampling with replacement, a new N particles

are selected. The probability of any particle being selected

in each of the N rounds is the probability from Equation 2.

Some of the original particles will appear multiple times in

the sample and some won’t appear at all. A small amount

of noise is then added to the states of the sampled particles;

the noise separates duplicate particles and helps explore the

state space.

When adding noise to the particle states it is desirable

that bend direction can change more freely for states with

a small bend angle ϕ. If bend angle is 0, the soft body is

perfectly straight and all bend directions are equivalent. For

small non-zero bend angles, a large change in bend direction

only changes the magnet position and orientation slightly.

This characteristic informed our choice of noise.

To add the noise each particle state is transformed into

a vector. The bend direction θ is the direction of the state

vector and its length is ϕ as shown in Figure 3. A random

vector is drawn from a symmetric normal distribution with

mean 0 and variance σ2. The noise vector is added to the

state vector. After adding the noise vector to the state vector,

the result is transformed back into a bend direction and a

bend angle based on its orientation and length. σ was equal

to 0.02π in simulations and 0.002π for the experimental

predictions.

Rejection sampling guarantees that the particle states re-

main valid. In particular, new random vectors are generated
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Fig. 5. Simulation results of position error using bend parameters from
spiral input. This plot depicts the error of 100 and 1000 particle prediction.
The error is the total 3D space between actual position and filter predicted
position.

until the resulting bend angle ϕ is no greater than π/2.

D. Model Results

To validate the filter we simulated several parametric

curves

θ = t, ϕ = 0.03t (5)

θ = (0.1t)2, ϕ = sin(t) (6)

and

θ = sin(t) + π/2, ϕ = | sin(t)|. (7)

These Equations are labeled Spiral, Flower, and Seagull

and are plotted in Figure 4.

The time t varied from 0 to 10π in increments of 0.01.

At each time step a simulated sensor measurement was

computed for each curve to drive particle filters with 1000

particles. To quantify the prediction error we compared the

predicted positions of the magnet in Cartesian space with

ground truth positions.

Figure 4 shows a plot of Equation 6 and Figure 5 shows

the errors over the entire simulation period for that curve.

Despite the drastic differences in the rate of change of the

ground truth state at the beginning and end of this curve,

the prediction errors are remarkably uniform. Although not

shown here, the errors on the other two curves were similarly

consistent. The predictions driven by Equations 5, 6, and 7

had root mean square errors of 0.0044 mm, 0.0046 mm, and

0.0046 mm respectively.

III. FABRICATION & DESIGN

A. Construction & Components

The proposed sensor was built using an embedded magnet

and Hall Effect IC inside a soft cylinder. This design and

corresponding components were chosen to promote constant

curvature tendencies and reduce interference with the user.

• The low durometer silicone (Ecoflex 00-30) helps to

give the module the necessary flexibility to cover a

Fig. 6. 1. Bottom mold with with silicone poured and component
placeholder arms installed 2. Placeholder arms removed after silicone sets,
leaving press-fit insets for components 3. Components (magnet and Hall
effect sensor) fit into place inside silicone 4. Top piece of mold added, and
more silicone is poured to complete the sensor 5. Sensor is removed from
mold once set, ready for use 6. Actual image of sensor plus scalebar after
being fully constructed using the process described above.

workspace large enough to be useful and reduces the

effect of the sensor on any soft body that it would

measure.

• The Hall Effect chip and corresponding IC was chosen

for its accuracy, small size (.35in x .35in x .08in), and

high speed interface enabled through SPI. The sensor

(Melexis MLX90363) is embedded on a custom IC

constructed through circuit etching in lab through a

process identical to the one described in [15]. Due to

concerns during the manufacturing process of excess

movement inside the silicone, an acrylic (.4in x .4in

x .0625in) plate was attached to the bottom of the IC

with chemical adhesive to produce a larger surface area,

discouraging shifting inside the silicone.

• The high-strength cuboid magnet (K&J Magnetics Part

Number B444B) is chosen for its unique and strong

magnetic field output. In contrast to a cylindrical shape,

a cuboid magnet produces a more unique and less

uniform magnetic field that proves helpful when ap-

plying localization techniques based on readings from

a single point. The size of the magnet (.25in), and

corresponding distance between the magnet and sensor

(15mm, or ∼.6in) are picked to strike a balance between

meaningful sensor length, low signal to noise ratio, and

similarity in size to the Hall Effect IC.

Figure 6 shows the molding process utilized to construct

the module with the components described. Overall, the

sensor was effective in its performance and achieved its

design goals.

IV. EXPERIMENTAL RESULTS

As a demonstration of the applicability of the sensor, a

secondary sensor module was constructed with a smaller

silicone cylinder in order to fit inside an existing 2-DOF

manipulator [16]. This sensor was used to measure the bend
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Fig. 7. Illustration of test performed to gather data in Figure 8. Same steps were repeated for all tests, to demonstrate repeatability of the results.

Fig. 8. Complete data of 3 independent lightbulb experiments. Vertical lines cross into plots taken from the same experiment. These lines show repeatable
spikes when an attempt is made to tighten the lightbulb after it has been completely screwed in the socket. All experiments were run with 1000 particles,
at 60Hz. Experiment 1 (left) Demonstrates 3 attempts to further tighten the lightbulb. Experiment 2 (middle) Also demonstrates 3 attempts to tighten
the bulb more than possible. Experiment 3 (right) Demonstrates a singular, much more concerted effort to tighten the bulb further than possible, which
instigates a much more significant spike due the longer attempt. All three of these experiments show how this sensor is able to produce results accurate
enough to interpret states in delicate tasks.

angle and direction parameters of the constant curvature

manipulator at a speed of ∼60Hz.

A. Lightbulb Test

A task that is incredibly difficult in robotics, and slightly

less so in soft robotics, is the handling of fragile objects.

In this paper we utilize a 2-DOF module similar to the

construction of the actuators in [5] to grasp a lightbulb.

We can utilize the proprioceptive sensing enabled by the

2-DOF sensor to measure the bend angle and direction of

the manipulator to determine when the bulb has completely

tightened in its socket without excess force.

The experiment consists of a setup shown in Figure 7 with

an active 2-DOF manipulator with an embedded sensor, and

a static soft finger. Together, with pneumatic pressure used

to bend the 2-DOF sensor, the lightbulb is held between the

two points and a lightbulb socket is screwed in from the top

manually.

Figure 8 shows the results and analysis of multiple re-

peated tests utilizing this process. The results demonstrate

how this sensor is easily integrated into existing systems,

and utilized for sensitive tasks that require high-speed, and

consistent feedback.

B. Motion Capture Demonstration

To further validate our readings from our sensor, we placed

the 2-DOF soft module in an Opti-Track motion capture

environment to compare real measurements with our sensor

measurements. We tracked the bend angle and direction of

the 2-DOF soft module, as we increased and decreased the
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Fig. 9. Data from multiple bend tests, showing both bend direction and
angle plots for motion capture ground truth and sensor readings. Offsets in
data readings can be attributed to multiple factors other than sensor error,
including imperfect placement in manufacturing and Opti-Track tracking
errors.

pressure of different sets of chambers to produce varying

levels of bending in multiple directions. Each experiment

focused on bending in a singular direction, and slowly

increasing and decreasing bend angle. Our results for this

experiment can be seen in Figure 9.

V. CONCLUSIONS & FUTURE WORK

We introduce a method for pose estimation of a magnet

in 3D space utilizing model-representative particle filter

simulations. Our model can estimate the curvature of a soft

body with a single Hall Effect sensor and magnet unlike

many magnet pose estimating tools. We also evaluate the

prediction quality on simulated data and test the filter on a

physical manipulator. Our approach is able to identify when a

light bulb was fully screwed in to its socket based on changes

in a measured magnetic field.

The filter is expandable to countless scenarios. It could

be applied to non constant-curvature settings or multiple

magnets and sensors could be incorporated in a single

device. Having multiple magnets and sensors would allow

for multiple-point localization within the same body. There is

plenty of room for the particle filter to be made more efficient

and accurate through algorithmic improvements. Other than

improving the filter or applying it to more complex scenarios,

there is also room for improvement in the empirical evalu-

ation of its accuracy. Tracking a physical manipulator with

a motion capture system while collecting the magnetic field

data from a calibrated sensor is an important future step in

measuring the real world accuracy of the filter.

Python code for reproducing the results in this paper is

available in a public repository1.
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