
SLInKi: State Lattice based Inverse Kinematics – A Fast, Accurate,
and Flexible IK Solver for Soft Continuum Robot Manipulators

*Shou-Shan Chiang, *Hao Yang, Erik Skorina and Cagdas D. Onal

Abstract— Soft continuum robots offer unique properties that
cannot be achieved using rigid linkage based robot manip-
ulators. Their dexterity and intrinsic compliance deliver the
ability to navigate constrained environments and operate in
unprecedented ways. Although Jacobian velocity matrix based
method is a widely used approach to solve inverse kinematics
(IK) problems for traditional rigid robots, the drawbacks of
this method emerge obviously while solving IK problems of
continuum robots, such as high computational cost with no
solution guarantees. Attempts to provide alternative solutions
suffer from limitations due to the computational complexity and
vast functional workspace of continuum manipulator postures.
Here, we propose a heuristic approach, State Lattice based
Inverse Kinematics Solver (SLInKi), which is inspired by
concepts originally developed for solving path-finding problems
to solve the IK problem of a soft continuum robot. The
algorithm implementation is intuitive, runs in real time, and
combines the strengths of two algorithms in a unique package
that surpasses existing methods in adjustability and efficiency.
Several simulation case studies and real robot experiments
demonstrate that the proposed approach is flexible, computa-
tionally efficient, and highly accurate as compared to the state
of the art.

I. INTRODUCTION

Continuum robots bend continuously along their length
instead of at discrete joints [1]. They have attracted attention
during the past decade because of their compliance, safety
and ability to negotiate constrained environments. These
properties make inverse kinematics (IK) calculations diffi-
cult for continuum robots. Traditional numerical methods
that work well for rigid robots, such as Jacobian based
approaches, involve very high computational costs for con-
tinuum robots, with no guarantee to find a correct solution
[2].

Continuum robot bodies trace smooth curves and, as a
result, they possess theoretically infinite degrees of freedom
(DoF). Making the common assumption that each finite
section of the continuum body follows a constant curvature
arc, bending angle and arc length are sufficient for their
kinematic representation [3]. Using these parameters, end-
effector poses can be calculated via forward kinematics
[4]. In contrast, the inverse problem - using tip poses to
calculate joint profiles - is much more difficult for continuum

This material is based upon work partially supported by the National
Science Foundation (NSF) under Grant No. CMMI-1752195. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

The authors are with the Robotics Engineering and Mechanical Engineer-
ing Departments, Worcester Polytechnic Institute, MA 01609, USA. All cor-
respondence should be addressed to Cagdas D. Onal cdonal@wpi.edu

*Shou-Shan Chiang and Hao Yang are co-first authors of this paper.

(a) (b)

Fig. 1: (a) An origami-inspired continuum robot is modular and scalable.
The current prototype consists of five modules, each being able to bend
in 3-D and change in length. (b) An instance of robot pose simulated by
SLInKi search algorithm, with alternate module configurations searched.

manipulators, since they do not always possess closed-form
solutions [5]–[8].

In general, geometric Jacobian is still one of the most
common approaches to solve IK problems [9], [10], but some
researchers have presented other feasible methods due to
its shortcomings. Courty et. al. implemented a Monte Carlo
algorithm [11], but this scheme is very time consuming at
each iteration, which makes the framework far less efficient
for structures with larger DoFs. Shinha et. al. applied a
searching-based algorithm to solve IK problems [12], but
their approach is substantially developed for redundant ma-
nipulators composed of rigid bodies.

Continuum robots are highly redundant systems. It is
possible to find inspiration for the continuum IK problem
based on appropriate methods in other areas, such as motion
planning. A path traced by a hypothetical mobile robot that
follows bounded constant-curvature trajectories in 3-D space
is similar to the shape of a continuum arm. This fact can be
utilized to effectively solve the complicated IK problem of
continuum robots [13]. State lattice-based searching is one
of the motion planning algorithm that especially suits the
scenarios where the orientation does matter, for instance, in
mobile robot navigation process [14], [15]. Williams et. al.
proposed an approach which involves A? to solve the inverse
kinematics problem [16]. It exhibits the potential of a path-
finding algorithm in IK problems. Chaichawananit et. al. also
presented a solution for applying A? algorithm to solve the



IK problem on 6-DoF rigid robot arms [17]. Xiao et. al.
presented similar ideas working on continuum robots [18].

FABRIK [19], a newly developed algorithm for solving
inverse kinematics, was presented in 2010. This method
iterated forward and backward to adjust the poses, allowing
for real-time solutions and smooth postures. Aristidou et. al.
extended FABRIK from the original setting [20], in which
the authors defined the convergence and let the link lengths
be changeable. However, till then this framework was only
applicable to rigid bodies. In 2018, Zhang et. al. proposed a
method to expand FABRIK framework to continuum robots,
denoted as FABRIKc [21], where the lowercase ’c’ stands
for ’continuum.’ They introduced virtual links and joints to
represent the continuum sections in a way that could be used
by FABRIK. This algorithm inherits FABRIK’s advantages
and provides a smooth configuration with relatively low
computational costs. Nevertheless, the fact that the arc length
for each segment remains unchangeable poses a significant
concern for this framework.

In this paper, we introduce a real-time inverse kinematic
solver for continuum robots with high flexibility, shown in
Fig. 1. This novel method combines the effectiveness of
FABRIKc with the efficiency of state lattice-based search
algorithms, denoted as State Lattice-based Inverse Kinemat-
ics (SLInKi). Specifically, state lattice-based searching is
implemented to find a feasible configuration for the first
(n − 2) segments, without involving orientation. Later on,
we apply to the last 2 segments our modified FABRIKc
framework, which is able to adjust arc length and bending
angles to fit the desired end-effector position and orientation.
To ensure the success of algorithmic integration, we also
propose a method for redefining the searching goal. The
detailed algorithm structure is discussed in Section II.

To validate the performance of SLInKi, we conduct several
tests to assess multiple properties using simulation and exper-
imental results with our custom origami-inspired continuum
robot. This robot comprises 5 cable-driven origami-inspired
modules with unique properties as presented in our prior
work [3], [22]. First, we present three different cost functions
for the state-lattice portion to comparatively evaluate their
performances in simulation. The results indicate that mini-
mized change in cable lengths provides the smoothest motion
and highest efficiency, which leads to reduced dithering
or shaking. We conduct both single pose and multi-poses
experiments to validate this hypothesis. For the following
tests, we implement cable-length-change minimization for
SLInKi, and evaluate the overall performance of three dif-
ferent IK solvers (SLInKi, Optimization, FABRIKc) in sim-
ulation. From these tests, we conclude that SLInKi requires
the shortest time to calculate a feasible solution, even for
a 5-section continuum robot. The fast computation speed
provides the real-time operation capability to continuum
robots. To exhibit this, we perform trajectory following test
on our experimental prototype, in which SLInKi showcases
its real-time processing ability for the robot end-plate to trace
a rectangular trajectory.

The contributions of this paper include:

Fig. 2: Flow chart for the SLInKi algorithm. Notice that P ∗ & z∗ denote
goal position & orientation separately, while nmax and kmax represent
the overall segment numbers and iteration limits of FABRIKc. The details
of generating motion primitives and extended FABRIKc are presented in
section II A & C. The pseudo-code for algorithms are placed in the
Appendix.

• Applying motion planning concepts to robot kinematic
problem.

• Investigating different cost functions for further research
potentials in distinctive scenarios.

• Extending the capability of FABRIKc to solve the
inverse kinematics of continuum manipulators, which
not only bend continuously but also vary in segment
lengths.

• Combining FABRIKc and a motion-planning algorithm,
state lattice-based searching, to create a fast and feasible
inverse kinematic solver for continuum manipulators.

II. APPROACH AND METHODS

Our approach treats the configuration profiles of contin-
uum robot as a path. Due to its hyper-redundant nature, the
end-effector is able to reach a desired pose with multiple
configurations. The inverse kinematic solver is implemented
to find proper configurations for each segment of the robot.
From this aspect, the path-finding algorithms share a sim-
ilar objective: to explore and connect adjacent nodes until
arriving the destination node.



A. State Lattice-based Searching
In our application, each segment of the continuum robot

has 6 DoFs in the task space. However, the position and
orientation are correlated, which constrain the end-effector
orientation when translating to the desired position. In this
regard, we consider the IK of our robot to be a kinodynamic
issue, which could be solved via a motion planning algorithm
- state lattice-based searching [23].

Jones and Walker introduced arc length(s), curvature(κ)
and the right-handed rotation angle(φ) as parameters of
the continuum configuration [24]. Inspired from this, we
can try to convert the continuous problem to a sequential
decision process by utilizing discretization. We consider
the tip position and orientation as states. The decisions,
corresponding to parameters of next module (s, κ, φ), are
made only at discrete states by following constant curvature
assumptions. The tip poses of the module are the nodes in
the lattice and the curves that connect the poses are the edges
in the lattice.

We generate the next motion primitive with the
parameters(s, κ, φ), and calculate the corresponding poses
with forward kinematics. The detailed process is exhibited in
Appendix II. We also choose a snap-width, which is inversely
proportional to the size of the state-lattice. By choosing the
snap-width, we can decide the density of motion primitives
(nodes). Smaller snap-width would enlarge the coverage
of searching path, unexpectedly increasing computational
cost as well. Higher the coverage rate, better the path
performance in a path-finding task. In our approach, higher
coverage rate provides more options for every segment and
generate a smoother, shorter configuration. However, this
approach aims to create a fast, feasible inverse kinematics
solver. A high density coverage is not essential for creating
an acceptable configuration. On the other hand, optimization
through length or smoothness may be considered as cost
functions, which will be introduced in next paragraph.

To find configurations with candidate nodes, we apply the
weighted A? search algorithm [25] [26] to our approach. This
algorithm introduces two functions to assess and select the
node for the next step during navigation. The g(n) function
is the path length from origin to node n, and the heuristics
function h(n) is the estimated distance from node n to the
goal node:

h(n) =
√
(x∗ − xn)2 + (y∗ − yn)2 + (z∗ − zn)2 (1)

where (x∗, y∗, z∗) is the goal node, the desired position, and
(xn, yn, zn) is the state of node n, which is the tip position
of nth potential configuration.

A bias ε is applied on h(n). The total cost function can
be f(n) = g(n) + εh(n), which means the node n is rated
with the difficulties not only from the start node to n but also
from n to the goal node. The heuristics function with bias
(ε > 1) guiding search increases the performance obviously,
especially in our application, which has rare obstacles in
workspace of manipulator. We can expand the path toward
the goal position straightforward without exploring too many
unrelated nodes.

Fig. 3: The concept of the searching goal setup is shown in the figure:
initially, (n-2) segments implement state lattice-based searching to access
the searching goal area with any feasible orientations. The searching goal
area is comprised of a ring, with the length of the final (n) segment being
the inner radius and the distance to the virtual joint of the second-to-last
(n-1) segment being the outer radius, padded green in the figure. Starting
from this area, FABRIKc is guaranteed to find IK solutions in free space
for the last 2 segments.

B. Cost Function Development

Although heuristics helps us exploit the shortest path
from current tip to desired end, for continuum robot we
specifically focus on the configuration profile, as introduced
above, which is highly correlated to g(n) function. Accord-
ing to our previous work [3], to achieve smooth trajectory
control, the IK solver of a continuum robot can be treated
as an optimization problem, in which we include inequality
constraints (limits) on some variables into the numeric proce-
dure. As mentioned in the paper, our robot module, designed
as a tendon driven actuator, involves curvature, bending
direction and arc length as intermediate variables to calculate
desired cable length messages. These length messages will be
transformed to desired encoder counts and then drive the DC
motors, finally achieving goal poses. Therefore, a projection
from curvature - arc length - bending direction (parameters
for completely defining a module shape) domain to cable
length domain is involved. This projection can be written as:

l1 = 2 sin(
κs

2
)(
1

κ
− d sin(φ)) (2)

l2 = 2 sin(
κs

2
)(
1

κ
+ d sin(

π

3
+ φ)) (3)

l3 = 2 sin(
κs

2
)(
1

κ
− d cos(π

6
+ φ)) (4)

where l1, l2 and l3 are the lengths of cables 1,2 and 3,
κ,s,φ represent curvature, arc length and bending direction
respectively, d is the original distance from the top center of
a module to the cable attachment point. Still, the deviation of
equations above is stated in our pre-posted paper [3]. Notice
that in cable length domain, straight line is the shortest
distance from initial to target. Thus, we can derive the
minimized cable length change cost function:

gcable(n) =

n∑
i=1

[(li1−li1p)2+(li2−li2p)2+(li3−li3p)2] (5)



Fig. 4: An visualization of the extended FABRIKc on a 2-segment con-
tinuum robot. (a) The initial and the target poses, where p1j and p2j are
the virtual joints for module 1 and 2. (b) Forward reaching phase: Update
module-2 to satisfy the desired position and orientation. The upper virtual
link 2 rotates and translate to reach the goal pose. The p2j follows the link.
The lower virtual link 2 rotates toward the virtual joint 1, and adjust the
length to connect virtual joint 2 and 1, where is the extending step that
does not happen in FABRIKc. (c) Update the length of upper visual link
2 with l′2. Due to the length changing, translate the p2j and lower virtual
link 2. Module-2 is done with forward reaching phase. (d) Update upper
virtual link 1 to connect module-2. The two virtual links should be in an
identical orientation. Translate p1j along with the virtual link. Define the
distance between the p1j and the origin as l′1. (e) Update the module-1 with
l′1 and have new p1j . Because module-1 is the module that connects to the
base, the orientation of the lower virtual link is always identical to the base
orientation. Module-1 is done with forward reaching phase. (f) Backward
reaching phase: Translate the whole robot to the origin. When it is done,
the end-effect should be in a proper orientation with little position errors.
Then, repeat from (b) to minimize the error.

where li1, li2, li3 are cable lengths for current state of each
module and li1p, li2p, li3p are for previous state.

In addition, the arc length (Minimum Arc-length Cost)
and curvature for each module (Minimum Curvature Cost)
can also be effective cost functions, as presented in another
paper we posted before [22]. The equations are shown below,
and we will evaluate their performance with minimum cable
change cost in the experiment section.

garc(n) =

n∑
i=1

si, gcur(n) =

n∑
i=1

κi (6)

C. Extended FABRIKc

FABRIKc is used to refine the robot configuration in
goal position & orientation. However, Zhang’s approach [21]
assumes a constant arc length, which does not agree with our
robot design. We modify the forward reaching part and adjust
the virtual link lengths to enable arc length variation, while
two each length of the virtual link pair remains identical.
When approximating the desired pose, we transfer the virtual
links back into bending angles and arc lengths for each
segment. An example of the detailed operation is exhibited
in Fig. 4, and a supplemental pseudo code is posted in
Appendix II.

D. Combined Inverse Kinematics Solver

The search strategy works well for reaching goal posi-
tion, but not the same for orientation. On the other hand,
although FABRIKc provides solutions for both position and
orientation, the computational cost increase exponentially
when adding segment numbers, due to its forward-backward
iteration process. Our approach combines the high speed
searching based strategy and the accurate end pose provider
FABRIKc together: searching algorithm calculates config-
urations from base towards goal position; FABRIKc then
finetunes the position and orientation using the last 2 seg-
ments. We name this combined inverse kinematic solver as
State Lattice-based Inverse Kinematics (SLInKi). Its detailed
algorithm framework is illustrated in a flow chart in Fig. 2.

E. Searching Goal

To decide where the path-finding inspired IK solver should
hand over jobs to FABRIKc, we need to figure out workspace
of last two segments, which implement FABRIKc to reach
goal position & orientation. In extending FABRIK [20],
the authors exhibited coverage equations. We quote their
work and define the last 2-segments’ FABRIKc reaching
workspace within two concentric spheres, setting it as goal
area for candidate tip positions of the (n-2) segments. Notice
that this should be an orientation-free coverage area. No
matter what orientation the end node is, FABRIKc will
be able to connect it with final 2-segments, and the end-
effector will be guaranteed to reach the desired goal position
& orientation in free space. Based on this concept, we
could now focus on approaching the goal position without
considering orientation in searching part. In addition, in this
setup the cost function only needs to be considered for
distance and bending configuration. The detailed searching
goal strategy is illustrated in Fig. 3.

III. EXPERIMENTS

In this section, we conduct several experiments to verify
the capability of our IK algorithm - SLInKi, as well as
assessing multiple aspects of its properties. First, we adopt
minimum cable length change as the cost function in the
SLInKi program, as it is determined having the best per-
formance in the previous work [22]. We compare the overall
performance among three different IK solvers intuitively and
evaluate throughout the results. Finally, a trajectory following
test for real robot is conducted, in which SLInKi demon-
strates it’s real-time capability. Here we introduce a brand
new origami-inspired modular continuum robot applied with
high flexibility, shown in Fig. 1. We implement SLInKi to
obtain IK solutions for a given rectangle trajectory and assess
the real robot’s following performance via observation.

A. Design, Manufacturing and Assembly

We developed a tendon-driven modular continuum robot,
which is described in detail in our previous paper [3]. The
robot module is capable of significant length change (about
1.25 times its original length) and highly resistant in torsion
(73 times stronger than a similar size silicone module). These



Fig. 5: Experimental results for comparing single pose performance of
multiple cost functions. The magenta line is the continuum robot in the
home position. Other curves are the final configurations from SLInKi with
different cost-functions. The red, green, and blue curves are respectively
optimized for minimum arc length, minimum curvature, and minimum cable
length change. All three configurations lead the end-effector to the desired
pose. The red curve tends to move toward the goal in shortest path. The
green curve leans to stay straight and bends only when it is essential. The
blue curve is similar to the green one because the configuration moves from
the home position, where all segments are straight.

two characteristics are attributed to the tubular accordion-like
tessellated origami structure fabricated from a 0.178 mm-thin
PET sheet. The origami structure was folded following the
Yoshimura origami crease pattern. Each origami continuum
module consists of a compliant plastic body, an acrylic end
plate, and a custom-made PCB, using an 8-bit ATmega32U4
as microprocessor, for embedded control. Further, a total of
four electrical wires run through the cavity of the origami
structure in a helical shape, providing power and commu-
nication between continuum modules. The module control
boards communicate to a desktop computer by using inter-
integrated circuit(I2C) protocol.

B. Cost Function Comparison: Single Pose

By investigating the difference among the three cost func-
tions, we shall determine the best performer and incorporate
it to SLInKi. We aim to assign random target tip position and
orientation within the robot workspace, then applying distinct
cost functions to SLInKi and observing the features. Specifi-
cally, these functions are minimized arc length, where shorter
arc length represents higher stiffness in our cable-driven
origami structure; minimized curvature, where less curvature
means more even tension on the cables and better endurance;
minimized cable length change, where less changes lead to
less jerking and power costs when transforming from one
pose to another. In Fig. 5, we exhibit different configura-
tions to achieve the same target, by involving separate cost
functions. Meanwhile, to verify that minimum cable change
cost is the most appropriate one towards our system, we
should conduct another multi-pose test to let the robot follow
a designated trajectory.

Fig. 6: Some results of the cost function experiments in sequence poses.
The magenta line is the continuum robot in the home position. The task
is to reach a sequence pose from (50,20,-230) at orientation (0.5547,0,-
0.8321) to (90,-40,-222) at orientation ( -0.2250,0,-0.9744) in 4 steps. (a) is
optimization for arc length. (b) is optimization for minimum curvature. (c)
is optimization for minimum cable length change. The configurations tends
to stay in the previous status and only move when it needs to. This shows
that (a) and (b) are unsuited to moving trajectories because some segments
have to move back and forth frequently during the task.

C. Cost Function Comparison: Multiple Poses

In a single pose experiment, we may still not be able to
intuitively comprehend the superiority of minimized cable
change cost function, so here we extend the desired target to
a continuum path, particularly a straight line with multiple
poses interpolated. As shown in Fig. 6, minimum cable
change function involves the most fluent shape changing,
or to say, the robot uses minimum power to switch its
poses. Consider the case to change cable length from 20
to 40, is it better to jump from 20 to 60 and then back to
40, or to continuously move from 20, to 30, and then 40?
Minimum cable change function provides solutions in the
latter condition.

D. Algorithms Performance Comparison

Now that we have included minimum cable change as
the cost function, we can proceed to validate our algorithm
and prove its advantages. Specifically, we shall compare our
algorithm with other IK solvers and evaluate their results. To
achieve this, multiple single pose experiments are conducted.
In each experiment, we randomly set a desired end-effector
position and orientation, then implement three different IK
algorithms: FABRIKc, numerical method based minimum
cable optimized IK solver, and SLInKi to create joint con-
figuration profiles. The overall robot shape generated from
these profiles are compared, thus the algorithm performances
can be assessed. Experiment results, including robot shapes
and intermediate virtual joints produced from three separate
algorithms are shown in Fig. 7, while the overall calculation
time, actual end-effector position & orientation values and
errors between desired ones are presented in Tables I-IV.



Fig. 7: Some results of the algorithms performance experiments. The blue
curve is the IK solution from FABRIKc. The green curve is from the
Jacobian method based IK solver optimized for minimum change. The multi-
color curve is the result by SLInKi optimized for minimum change, with
each color representing a manipulator segment. The skeletons on FABRIKc
and SLInKi configurations display the virtual links and joints. These figures
only show the configurations, while the details of time usage and errors are
shown in the tables below. (a) corresponds to Table III. (b) corresponds to
Table IV.

E. Real Robot Trajectory Following Test

The solutions of SLInKi for a series desired positions
would not be similar due to its discretization property. Seg-
ments of the continuum robot have to bend, extend or shorten
from this pose configuration to next pose configuration. It
will lengthen response time and decrease energy efficiency.
Adjusting the cost function in SLInKi can change the behav-
ior of node selection and optimize the pose configuration for
minimum change from previous pose configuration.

On our cable-driven origami manipulator, the bottleneck
for the response time is the rotation speed of the motors. The
minimum change of cable length between two configurations
shorten the response time and increase the stability. From
previous work, we know that the single segment can be map-
ping both general configuration space and cable-length space
[22]. In cable-length space, a point means a configuration of
a single segment. The distance between two points means
the amount of change between the configurations. We apply
sum of the cable length change amount into the cost function
in SLInKi to count the cable-length change of all segments
into configuration searching.

To validate the multi-poses performance of SLInKi, we
conduct an experiment where simulation and real robot
testing progress simultaneously. As shown in Fig. 8, the real
robot configurations shown at the four corners correspond
respectively to the simulation results of the four corners of
the rectangular trajectory. The experiment shows that the
robot is able to follow the trajectory in real time within an
acceptable error performance, which certificates the real-time
capability of SLInKi.

Fig. 8: This figure shows the rectangular trajectory following experimental
results of both simulation and real robot test. The simulation, as shown in
the middle, documents the 5-segment robot’s trajectory following upper left
- lower left - lower right - upper right sequence of the rectangle. Each side
of the rectangle is interpolated by 5 waypoints, and the robot configuration
profiles are calculated via SLInKi. The real robot shape shown in the figure
corresponds to the configuration at four corners of a rectangle, respectively.

IV. CONCLUSIONS AND FUTURE WORKS

We propose the State Lattice-based Inverse Kinematics
Solver (SLInKi) as a fast, accurate and flexible inverse
kinematics solver for extensible continuum manipulators.
SLInKi combines algorithms originally developed for solving
path-planning problems with our modification of the existing
continuum manipulator kinematic algorithm FABRIKc. This
allows us to utilize the efficiency of path-planning algorithms
while maintaining a high degree of accuracy. We have
adopted a state lattice-based approach with weighted A*
to find the feasible configurations for the manipulator to
approach the objective quickly, and then modified FABRIKc
to allow it to solve the kinematics of the extensible over the
final stretch. We have verified this approach by applying it on
the 5-segment origami robot [3]. The robot moves following
the designed rectangular path smoothly.

One advantage of the weighted A* approach for most
of the workspace is that it allows inverse kinematics to be
performed free from a manipulator model. We can freely
adjust the number of the section for the continuum robot,
taking advantage of the modular nature of our manipulator.
In addition, the use of the cost function allows us to easily
swap out what the algorithm is minimizing, letting us fine-
tune our computed states depending on the robot and the
application.

Our future research on the SLInKi algorithm will cover
several aspects, including i) obstacle avoidance (which is
one of SLInKi’s inherent features designed based on path-
finding algorithms), ii) grow-to-shape implementation, and
iii) feedback combination and application to a controller for
continuum robots.



REFERENCES

[1] G. Robinson and J. Davies, “Continuum robots - a state of the art,”
in Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), vol. 4, pp. 2849–2854 vol.4.

[2] P. Sears and P. E. Dupont, “Inverse kinematics of concentric tube steer-
able needles,” in Proceedings 2007 IEEE International Conference on
Robotics and Automation, pp. 1887–1892, 2007.

[3] J. Santoso, E. H. Skorina, M. Luo, R. Yan, and C. D. Onal, “Design
and analysis of an origami continuum manipulation module with
torsional strength,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2098–2104, IEEE.

[4] A. Aristidou and J. Lasenby, “Inverse Kinematics: A review of existing
techniques and introduction of a new fast iterative solver,” p. 74.

[5] G. S. Chirikjian, “Inverse Kinematics of Binary Manipulators Using
a Continuum Model,” vol. 19, no. 1, pp. 5–22.

[6] J. Lai, K. Huang, and H. K. Chu, “A Learning-based Inverse Kine-
matics Solver for a Multi-Segment Continuum Robot in Robot-
Independent Mapping,” in 2019 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pp. 576–582.

[7] S. Neppalli, M. Csencsits, B. Jones, and I. Walker, “A geometrical
approach to inverse kinematics for continuum manipulators,” in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3565–3570, IEEE.

[8] S. Neppalli, M. A. Csencsits, B. A. Jones, and I. D. Walker, “Closed-
Form Inverse Kinematics for Continuum Manipulators,” vol. 23,
no. 15, pp. 2077–2091.

[9] L. Sciavicco and B. Siciliano, “A solution algorithm to the inverse
kinematic problem for redundant manipulators,” vol. 4, no. 4, pp. 403–
410.

[10] W. A. Wolovich and H. Elliott, “A computational technique for inverse
kinematics,” in The 23rd IEEE Conference on Decision and Control,
pp. 1359–1363.

[11] N. Courty and E. Arnaud, “Inverse Kinematics Using Sequential
Monte Carlo Methods,” in Articulated Motion and Deformable Objects
(F. J. Perales and R. B. Fisher, eds.), Lecture Notes in Computer
Science, pp. 1–10, Springer.

[12] A. Sinha and N. Chakraborty, “Geometric Search-Based Inverse Kine-
matics of 7-DoF Redundant Manipulator with Multiple Joint Offsets,”
in 2019 International Conference on Robotics and Automation (ICRA),
pp. 5592–5598.

[13] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A Survey
of Motion Planning and Control Techniques for Self-Driving Urban
Vehicles,” vol. 1, no. 1, pp. 33–55.

[14] R. Knepper and A. Kelly, “High Performance State Lattice Planning
Using Heuristic Look-Up Tables,” in 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3375–3380, IEEE.

[15] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” vol. 26, no. 3, pp. 308–
333.

[16] S. G. D. Williams, “Using the A-Star Path-Finding Algorithm for
Solving General and Constrained Inverse Kinematics Problems,”

[17] J. Chaichawananit and S. Saiyod, “Solving inverse kinematics problem
of robot arm based on a-star algorithm,” in 2016 13th International
Joint Conference on Computer Science and Software Engineering
(JCSSE), pp. 1–6.

[18] J. Li and J. Xiao, “A general formulation and approach to constrained,
continuum manipulation,” vol. 29, no. 13, pp. 889–899.

[19] A. Aristidou and J. Lasenby, “FABRIK: A fast, iterative solver for the
Inverse Kinematics problem,” vol. 73, no. 5, pp. 243–260.

[20] A. Aristidou, Y. Chrysanthou, and J. Lasenby, “Extending FABRIK
with model constraints: Extending FABRIK with model constraints,”
vol. 27, no. 1, pp. 35–57.

[21] W. Zhang, Z. Yang, T. Dong, and K. Xu, “FABRIKc: An Efficient
Iterative Inverse Kinematics Solver for Continuum Robots,” in 2018
IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics (AIM), pp. 346–352.

[22] J. Santoso and C. D. Onal, “An Origami Continuum Robot Capable of
Precise Motion Through Torsionally Stiff Body and Smooth Inverse
Kinematics,”

[23] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning
control sets for constrained motion planning in discrete state spaces,”
in 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3231–3237.

[24] B. A. Jones and I. D. Walker, “Kinematics for multisection continuum
robots,” vol. 22, no. 1, pp. 43–55.

[25] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths,” vol. 4, no. 2,
pp. 100–107.

[26] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial
intelligence, vol. 1, no. 3-4, pp. 193–204, 1970.

APPENDIX I
COST FUNCTION PERFORMANCE COMPARISON TABLES

TABLE I: Performance Comparison for Cost Functions, Single Pose, Goal
Position: (150;-90;-220) & Orientation: (0.5661;0.2265;-0.7926)

min-arc len min-curv min-cable change

arc-length
(mm)

1 56.00 60.67 60.67
2 70.00 70.00 65.33
3 70.00 60.67 65.33
4 48.71 58.04 54.69
5 45.57 52.98 49.51

curvature
(10−3/mm)

1 12.50 7.692 7.692
2 0.000 0.000 3.571
3 0.000 7.692 3.571
4 9.470 8.750 6.141
5 21.85 22.34 20.41

TABLE II: Performance Comparison for Cost Functions, Single Pose, Goal
Position: (50;-100;-140) & Orientation: (0;0;1)

min-arc len min-curv min-cable change

arc-length
(mm)

1 60.67 65.33 65.33
2 70.00 70.00 65.33
3 46.67 51.33 56.00
4 35.47 47.99 43.40
5 30.30 52.04 48.92

curvature
(10−3/mm)

1 7.692 3.571 3.571
2 0.000 0.000 3.571
3 18.03 12.03 7.217
4 25.69 27.25 34.41
5 51.97 20.68 24.49

TABLE III: Single Pose IK Solutions for Desired Position: (-60,150,-230)
& Desired Orientation: (-0.7071,0,-0.7071)

FABRIKc Opti. based SLInKi
time(ms) 183 112 12.2(9.9+2.3)

position(mm) (-60,149,-231) (-62,152,-234) (-59,150,-230)
pos-err(mm) 0.863 4.52 0.766
orientation (-0.71,0,-0.71) (-0.4,0.77,-0.5) (-0.71,0,-0.71)

ori-err 0 0.85 0

TABLE IV: Single Pose IK Solutions for Desired Position: (-10,40,-260) &
Desired Orientation: (0,0.2169,-0.9762)

FABRIKc Optimal IK SLInKi
time(ms) 206 124 11.8(10.1+1.7)

position(mm) (-9.7,40,-261) (-10,40,-260) (-9.9,40,-259)
pos-err(mm) 0.775 0 0.632
orientation (0,0.22,-0.98) (0,0.22,-0.98) (0,0.22,-0.98)

ori-err 0 0 0

APPENDIX II
PSEUDO CODES FOR SLINKI



Algorithm 1: SLInKi
Result: The configurations of continuum robot
Generate Motion Primitives();
Set Goal Area;
A* search() approach goal area;
Extended FABRIKc find the final pose;
Export configurations ;

Algorithm 2: Generate Motion Primitives
Result: List of transformation matrix and the index

of motion primitives
κ← 0, φ← 0, s← 0,m← 0;
while s < smax do

Tm = ForwardKinematics(s, κ, φ);
indexm = [s, κ, φ] ;
s = s+ δs;
m = m+ 1;

end
κ← δκ
while κ < κmax do

s ← δs
while s < smax do

φ← 0
while φ < φmax do

Tm = ForwardKinematics(s, κ, φ);
indexm = [s, κ, φ];
φ = φ+ δφ;
m = m+ 1;

end
s = s+ δs;

end
κ = κ+ δκ;

end
T, index

TABLE V: Nomenclature used in kinematics modeling and algorithm

s, smax Arc length and maximum allowable value
κ, κmax Curvature and maximum allowable value
φ, φmax Bending orientation and maximum allowable value
m Index of motion primitives
Tm Transformation matrix of mth (s, κ, φ) setting

δs, δκ, δφ snap-width of s, κ, φ
n Number of segments
t Index of the segments, t=1,2...n.t = 1 for the most proximal

segment and t = n for the most distal segment
st Arc length of tth segment
κt Curvature of tth segment
φt Bending orientation of tth segment
e Position error
ε The threshold of the error
lt Length of the virtual links on tth segment
p∗ The target position in the world coordinate
ẑ∗ The target orientation in the world coordinate
ptj Virtual joint position of tth segment
pte End position of tth segment
ptb Base position of tth segment
ẑte End orientation of tth segment
ẑtb Base orientation of tth segment

k, kmax The iteration index and the maximum allowable iterations

Algorithm 3: Extended FABRIKc
Result: List of pe, pj , pb for each segment
while e > ε and k < kmax do

// Forward reaching;
pe ←p∗ ;
ẑe ← ẑ∗ ;
t ←1
while t ≤ n do

// translate and rotate the end of tth segment
pte = pe ;
ẑte = ẑe ;
// get old virtual joint position and base
orientation
ptj = pte − lt · ẑte ;
ẑtb = (ptj − p(t+1)j)/||ptj − p(t+1)j || ;
// adjust the length of virtual link
lt = ||ptj − p(t+1)j || ;
// update virtual joint and base of tth segment
ptj = pte − lt · ẑte ;
ptb = ptj − lt · ẑtb ;
// set the pose for the next segment
pe = ptb ;
ẑe = ẑtb ;
t = t+ 1 ;

end
// Backward reaching;
pb = pbase;
while t ≥ 1 do

ν = pb − ptb ;
// translate tth segment
ptb = ptb + ν ;
ptj = ptj + ν ;
pte = pte + ν ;
// set the base position of the next segment
pb = pte ;
t = t− 1 ;

end
e = ||p∗ − pe|| ;
k = k + 1;

end


