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Abstract—The human hand serves as an inspiration for
robotic grippers. However, the dimensions of the human hand
evolved under a different set of constraints and requirements
than that of robots today. This paper discusses a method of
kinematically optimizing the design of an anthropomorphic
robotic hand. We focus on maximizing the workspace intersec-
tion of the thumb and the other fingers as well as maximizing
the size of the largest graspable object. We perform this opti-
mization and use the resulting dimensions to construct a flexi-
ble, underactuated 3D printed prototype. We verify the results
of the optimization through experimentation, demonstrating
that the optimized hand is capable of grasping objects ranging
from less than 1 mm to 12.8 cm in diameter with a high degree
of reliability. The hand is lightweight and inexpensive, weighing
333 g and costing less than 175 USD, and strong enough to lift
over 1.1 lb (500 g). We demonstrate that the optimized hand
outperforms an open-source 3D printed anthropomorphic hand
on multiple tasks. Finally, we demonstrate the performance
of our hand by employing a classification-based user intent
decision system which predicts the grasp type using real-time
electromyographic (EMG) activity patterns.

I. INTRODUCTION

The human hand is an incredibly complex mechanism
that allows us to physically interact with our environment
in a variety of ways [1]. Since activities of daily living can
become extremely challenging for unilateral and bilateral
amputees, researchers and engineers are continually work-
ing to design and improve prosthetic hands [2]. Prosthetic
devices can range in complexity from a simple one degree of
freedom (DoF) hook mechanism to fully articulated powered
hands. Unfortunately, as complexity and functionality of a
prostheses increases, so does its cost, making many of the
more effective prostheses prohibitively expensive [3].

One option for decreasing costs is utilizing underactu-
ation. With underactuation, fewer actuators are needed to
drive the fingers [4], enabling researchers to create an-
thropomorphic, articulated hands that are relatively low in
cost. Underactuation can further reduce cost by decreasing
control requirements, because underactuated hands conform
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to objects, reducing the likelihood of damaging the object
or the hand itself while grasping [5].

A significant challenge in designing prosthetic hands,
underactuated or otherwise, is balancing functionality, cost,
and aesthetics. In most cases, the functionality of a hand is
difficult to determine until the hand has been built and tested.
It would therefore be beneficial to have a methodology for
objectively optimizing the hand design based on certain
desired functional criteria.

While there are many instances of researchers optimizing
the design of non-anthropomorphic grippers [6], [7], [8],
this type of optimization is much less common among
anthropomorphic hands. Kragten et al [9] describe a number
of performance metrics that can be used to quantify an
underactuated hand’s ability to grasp and hold objects, with
a focus on planar 2-fingered grippers. Due to the complexity
of anthropomorphic hand configurations, however, it is much
more difficult to determine what objective criteria should be
used to gauge the effectiveness of a hand.

In [10], Feix et al develop a metric for comparing the
motion capability of anthropomorphic hands. Their method
can objectively compare similarities between robotic or
prosthetic hands and the human hand, taking into account
fingertip workspaces and capable hand poses. In [11], Cerruti
et al describe an iterative numerical methodology for design-
ing an anthropomorphic hand that achieves similar dexterity
and reach to the human hand. However their solution is
relatively unconstrained, and as a result would be difficult to
carry out further studies beyond simulation. Authors in [12]
develop an optimization metric which they call ‘Interactivity
of Fingers.’ They create an optimized hand based on this
metric, which maximizes workspace intersection between
fingers and optimizes for precision grasps, but does not
consider the ability to grasp larger objects.

In this paper, we present a method of kinematically
optimizing the design of an anthropomorphic robotic hand.
We split the optimization into two steps. First, we separately
optimize the link lengths of the index, middle, ring, and
pinky fingers to most closely match the 2-dimensional
workspace of the corresponding human fingers. Next, using
these link lengths as a starting point, we perform a 3-
dimensional optimization of the entire hand to objectively
determine the best positions and orientations of each finger
relative to the thumb, as well as the thumb link lengths
and joint angles. The hand is optimized to maximize the
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largest object the hand can grasp while also maximizing the
workspace intersection of the thumb and other fingers.

Our contributions are (1) a methodology to kinematically
optimize an anthropomorphic hand design based on desired
functional criteria, especially workspace intersection and
maximum object size, (2) a 3D-printed anthropomorphic
hand built with these optimized parameters and detailed
specifications on experimentally-determined maximum ob-
ject size and maximum object weight for various grasp types,
and (3) a real-time pattern classification testing scheme to
show the dexterity of the hand by accessing the user’s
voluntary neuromuscular drive through surface EMG signals.

Fig. 1. Kinematic Model of the Hand.

II. KINEMATIC OPTIMIZATION

We present our kinematic model before describing our op-
timization methodology. The kinematic optimization is split
into two parts: (1) 2D optimization of the link lengths for
each finger (excluding the thumb) and (2) 3D optimization
of the finger positions and orientations and thumb geometry.

A. Kinematic Modeling

Before optimizing the hand, we first developed a kine-
matic model, shown in Figure 1. The hand has 5 fingers; the
index, middle, ring, and pinky fingers each have 2 flexion
joints, and the thumb has one joint for abduction/adduction
and one for flexion. Table I shows the traditional Denavit-
Hartenberg (DH) parameters for the fingers and thumb.
Angles with an asterisk represent joint variables, while those
without an asterisk are constant angles that are part of the
finger’s kinematics. The base coordinate frame is defined at
the base of the thumb, meaning the thumb’s base is fixed
at (0, 0, 0), and the locations and orientations of the fingers
are defined relative to this base frame.

B. 2D Optimization of Finger Link Lengths

For each finger (excluding the thumb), we performed a
2D optimization to maximize an objective J :

J = AH,R −AH,¬R (1)

TABLE I
DH PARAMETERS

Joint a α d θ

Fingers

1
√
x2f + y2f 0 zf atan2(xf , yf )− π

2

2 0 π
2

0 −θ1 + π
2
− θ2

3 lf1 0 0 θ3∗
4 lf2 0 0 θ4∗

Thumb

1 0 π
2

0 θ1∗
2 lt1 0 0 θ2
3 lt2 0 0 θ3∗
4 lt3 0 0 θ4

where AH,R is the overlap between the robot finger’s
workspace and that of the corresponding human finger and
AH,¬R is the area of the human finger workspace that does
not overlap with the corresponding robot finger workspace.
Figure 2 (a) shows the difference between a human finger
workspace (3 links) and a robot finger workspace (2 links).

We parameterize each link length of each finger as some
percentage w of the total length of the human finger. For
example, for the robot index finger, the proximal link length
(link 1) is given by w1(lpd+ lpm+ lpp), where lpd, lpm, and
lpp are the lengths of the human index finger’s distal, medial,
and proximal phalanxes, respectively. Similarly, the robot
distal link length (link 2) is given by w2(lpd + lpm + lpp).
Human link lengths for each finger were chosen based on
the average link lengths in [13]. For each finger indepen-
dently, parameters w1 and w2 are optimized to maximize
the objective J , with the constraint that 0 ≤ wi ≤ 1.
Figure 2 (b) shows how these parameters influence the
objective J for one finger. However, it is not practical to
do an exhaustive search for all fingers, so we use a more
sophisticated optimization algorithm.

Algorithm 1: Cross Entropy Method (CEM)
Result: Wbest, Jbest
W = W0; Σ = Σ0; k; ke; ε; N ;
for i=1:N do

generate population(k, W , Σ);
select top ke best W ’s;
W = 1

ke
Σkej=1Wj ;

Σ = ε
ε+ke

I + (W1:ke −W )T (W1:ke −W );
evaluate W ; update Wbest, Jbest;

end

For the 2D optimization, we use the Cross Entropy
Method (CEM) [14] as formulated in Algorithm 1. Inputs
to the algorithm are: W0, an initial set of parameters (i.e.
W = [w1, w2]), Σ0, a covariance matrix used to randomly
explore, k, the population size, ke, the number of elite
parameter sets to consider when updating W and Σ at
each iteration, ε a small numerical stability constant, and
N , number of iterations. We use the following inputs: W0
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Fig. 2. 2D optimization. (a) Overlap between human finger workspace and
optimized robot finger workspace. (b) We plot the objective J as we vary
the link length parameters, w1 and w2, for one finger.

Fig. 3. 3D arc created for finger placement. Fingers are evenly spaced
along arc. Left: Isometric view. Right: Front view.

uniform randomly drawn from [0, 1], Σ0 = 2I, k = 10,
ke = 3, ε = 0.01, and N = 100. Table III (left) shows the
optimized link lengths for each finger.

C. 3D Optimization of Finger and Thumb Orientation

Using the results from the 2D optimization, we set up a
3D optimization based on the kinematic model of the hand.
Because we have a large number of parameters, we used a
genetic algorithm to perform the optimization.

1) Optimization Parameters: To moderately simplify the
optimization, we chose to exclude the pinky finger from the
analysis, as it is primarily for stability rather than grasping
[15]. Later we manually chose an appropriate location and
orientation. To facilitate a more anthropomorphic solution,
we defined the base positions of the 3 fingers (index, middle,

and ring) to be along a 3D arc (Figure 3), inspired by the
distal transverse arch of the human palm [16]:

x(θ) = rxcos(θ) + dx |θmax

θmin

y(θ) = rysin(θ) + dy |θmax

θmin

z(θ) = rzsin(θ) + dz |θmax

θmin

(2)

In total, we have 16 parameters to be optimized, defined
in Table II, that describe the geometry of the robotic hand.

TABLE II
3D OPTIMIZATION PARAMETERS

Parameter Definition

rx, ry , rz
The x, y, and z radii that define the arc on which
the fingers lie

dx, dy , dz
The x, y, and z offsets of the arc’s center from the
origin

θmin, θmax
The minimum and maximum angles for which the
arc is defined

θ2i, θ2m, θ2r
The orientation angle of the index, middle, and ring
fingers

θ2t, θ4t
The constant flexion angle of the thumb’s metacarpal
and distal phalanx

l1t, l2t, l3t
The link lengths of the thumb’s metacarpal and
proximal and distal phalanxes

Because there are physical limitations on a robotic hand
that must be built (e.g. links do not have zero width), and
because it should not deviate too far from the size and shape
of a human hand, we constrain the parameters as follows:
• The bases of the fingers must be at least 1.8 cm apart.
• The tips of the fingers must be at least 1.8 cm apart.
• The palm height (the z coordinate of each finger)

must be between 9.1 cm and 12.6 cm, based on the
dimensions of the human palm [17], [13], [18].

• The ring finger must have x < 0 to prevent the thumb
from being placed below the ring or pinky fingers.

2) Optimization Objective: Our goal in optimizing our
hand design is to maximize the range of object sizes the
hand can grasp. We assume that if the fingertip workspace
between the thumb and any finger intersects, the hand can
theoretically grasp an object of zero width using the thumb
and that finger. By maximizing this intersection, we increase
the chances that the thumb and finger are able to meet, since
each finger is underactuated and its tip position cannot be
precisely controlled. For each finger, we calculate the length
of the intersection curve between the 2D surfaces that define
the finger and thumb workspaces. Because the index and
middle fingers are more important to grasping than the ring
finger [15], their intersection lengths (lint,i and lint,m) are
weighted by a factor of 1, while the ring finger’s intersection
length (lint,r) is weighted by a lower factor of 0.75 (this
weight factor is somewhat arbitrary).

To be able to also grasp large objects, we want to
simultaneously maximize the object size the hand can the-
oretically grasp. Specifically, we calculate the maximum
cylinder diameter the hand can grasp using a tripod grasp
(only using index, middle, and thumb). To calculate this
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maximum (cylindrical) object size, dmax,obj , we calcu-
late the maximum object size independently for the in-
dex finger and middle finger and take the minimum of
these. For the independent calculations, we consider the
distance between the thumb and the finger, f , as well as
the depth of the grasp, to account for object interference
with the palm. For a given set of joint angles for the
finger, the maximum object size that can be grasped is:
dfmax,obj = min(dfmax,fingers, 2r

f
max,palm), as shown in

Figure 4. dfmax,fingers is the distance between the tip of
the thumb and the tip of finger f . To calculate dfmax,fingers
for a finger, we assign the thumb flexion angle to be zero
(completely open) and determine the joint angles for the
finger such that the distal link of the finger is parallel to
the distal link of the thumb. rfmax,palm is calculated as the
shortest distance from the center of the line connecting the
thumb and finger tips, when their distal links are parallel,
to the ‘palm’ plane defined by the base of the thumb and
the bases of the two fingers with the greatest y-coordinates.
In optimizing the object size, we only considered the hand’s
theoretical ability to grasp a cylinder of a given size, not
weight. A more realistic calculation of maximum graspable
object size would also need to consider factors such as
object weight, grasp force, and friction. For our purposes, we
analyzed relative finger positions as the minimum necessary
condition to grasp an object but recognize that this condition
alone is not sufficient to guarantee a successful grasp.

Fig. 4. Maximum Cylinder Size, side view of hand. Left: Maximum object
size is limited by span of fingers. Right: Maximum object size is limited
by depth of palm.

Our final optimization objective J is the product of the
maximum object size and the sum of the intersection lengths
between the index, middle, and ring fingers and the thumb:

J =
[
1 1 0.75

]  lint,ilint,m
lint,r

 dmax,obj (3)

3) Genetic Algorithm: For the 3D optimization, we used
a genetic algorithm (GA) [19] to find the best parameters
that determine finger and thumb placement and thumb link
lengths. Our GA, seen in Algorithm 2, requires the follow-
ing inputs; P0: an initial population of sets of parameters
(W = [w1, ..., w16]), k: population size, kp: number of

parents, α: exploration parameter, C: crossbreed rate, µ:
mutation rate, and N : number of iterations. We use these
values: P0 includes one hand-picked parameter set and k−1
randomly generated parameter sets (such that all parameter
sets meet constraints), k = 30, kp = 9, α = 0.2, C = 0.2,
µ = 0.3, and N = 100.

Algorithm 2: Genetic Algorithm (GA)
Result: Wbest, Jbest
P = P0; k; kp; α; C; µ; N ;
evaluate and sort P ;
for i=1:N do

select top kp as parents;
for j=1:k do

child;
while constraints not met do

randomly select two distinct parents;
child = parent 1;
with rate C over child, cross w/ parent 2;
with rate µ over child, add αε,
ε ∼ N(0, 1);

end
Pj = child;

end
evaluate and sort P ; update Wbest, Jbest;

end

4) Optimized Solution: Figure 5 shows the final result of
the 3D optimization, including finger workspaces (shaded)
and workspace intersections (highlighted). Optimal parame-
ter values are shown in Table III (right).

Fig. 5. Resulting hand design from the 3D Optimization. (a) Isometric
view. (b) Front view. (c) Top view.

III. HAND PROTOTYPE DESIGN

Our hand prototype consists of 4 fingers and a thumb,
all 3D printed from PLA. Each finger link is composed
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TABLE III
OPTIMIZED PARAMETERS

2D Optimization 3D Optimization

Parameter Value Parameter Value

l1i, l2i 4.8, 3.0 cm rx, ry , rz 9.6, 2.9, 12.0 cm
l1m, l2m 5.1, 3.8 cm dx, dy , dz 2.2, 0.0, -0.2 cm
l1r , l2r 4.9, 3.5 cm θmin, θmax 80.9, 125.9◦

l1p, l2p 3.9, 2.8 cm θ2i, θ2m, θ2r 6.8, 2.3,−1.8◦

- - θ2t, θ4t 38.6, 25.0◦

- - l1t, l2t, l3t 6.0, 1.8, 3.8 cm

of 2 PLA pieces sandwiched around a single flexible 3D
printed Ninjaflex piece, which spans the length of the finger
to create flexure joints. In addition to the Ninjaflex, we also
embed a laser-cut PET (polyethylene terephthalate) sheet
sandwiched between the PLA links to prevent lateral and
torsional deformation while still allowing bending at the
joints. Figure 6 shows an exploded view of the index finger.
The middle, ring, and pinky fingers are identical in structure,
only differing in link lengths.

Fig. 6. Finger composed of printed PLA links and flexure joints created
by printed Ninjaflex and laser-cut PLA. A cable runs through the links of
the finger and is driven by a pulley attached to a Servo within the hand.

The underactuated nature of the fingers makes their be-
havior somewhat unpredictable, since the tip position is not
actually controllable. Power grasps (multiple links of the
fingers are in contact with the object) are generally more
stable than precision grasps (only the fingertips contact the
object). As such, we wanted to facilitate power grasps,
especially with larger objects; we wanted the fingers to
conform around objects, making contact with the proximal
link before the second joint begins bending (Figure 7e). To
do this, we decreased the stiffness of the flexure joint at the
base of the finger compared with that of the second joint.
The stiffness was decreased by removing some material from
the Ninjaflex part at the location of the base joint.

In all, the hand has 5 DoF. One servo drives each of the
index and middle fingers, one servo drives the ring and pinky
together, and 2 servos drive the thumb for opposition and
flexion motions. The fingers are tendon driven, using wire
cables attached to pulleys on the servos. A similar wire-
pulley setup drives the thumb’s flexion motion, while its
abduction/adduction is driven directly by a servo attached
to its base (Figure 7a-d).

Fig. 7. (a-d) The thumb has 2 DoF. (a) Abducted and extended. (b)
Abducted and flexed. (c) Adducted and extended. (d) Adducted and flexed.
(e) Index finger bending. The proximal joint bends before the distal joint
begins bending.

IV. EXPERIMENTS

To validate our optimization, we performed multiple qual-
itative and quantitative experiments to determine how well
the hand can grasp objects of various sizes, how many grasp
types the hand can achieve, and how quickly the hand can
grasp objects when compared to the Open Bionics Ada hand
[20], another open-source 3D printed design that we had
available in our lab.

A. Verification of Optimization

In our optimization of the hand, the theoretical maximum
and minimum object size that can be grasped are 12.6 cm
and 0.0 cm respectively. After assembling the prototype
hand, we experimentally determine the maximum and mini-
mum object size to confirm the optimization results. We find
that the hand is capable of grasping a cylinder with diameter
12.8 cm if assistance is provided initially to keep the object
still while the hand closes around it. Without assistance, the
hand is capable of grasping a cylinder with diameter 10.7
cm. This is smaller than calculated during the optimization,
but this is expected because in reality, unlike in the kinematic
model used for optimization, the fingers do not have zero
thickness. Each finger has a thickness of 0.8 cm, except
the thumb which has a thickness of 1.0 cm. The minimum
object size was 0.085 cm, although the index, middle, and
ring fingers can contact the thumb, so the minimum size is
essentially 0 cm. As shown in Figure 8, the hand can grasp
a wide variety of objects, using grasps such as pinch, lateral
(key), writing tripod, and cylindrical. For the grasp types
shown, we tested how much weight the hand could hold for
objects of various sizes (Table IV).

B. Timed Pick and Place

We conducted an experiment to compare the time that
it takes to pick and place 10 objects using the optimized
hand versus the Ada hand. The 10 objects varied in shape
(spherical, rectangular, cylindrical, etc.) and size (from 1.5
cm to 10.5 cm across). In this experiment, 4 participants
manually positioned the hand and could open or close the
hand by pressing a button. When the button (the ”Enter”
key on the laptop controlling the hand) was pushed, the
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Fig. 8. The hand can grasp a wide range of everyday objects, ranging in
size from 0.085 cm to 12.8 cm.

TABLE IV
MAXIMUM WEIGHT BY GRASP TYPE

Shape Size (cm) Grasp type Weight (g)
Cylinder 12.8 Large diameter 430.0
Cylinder 10.7 Large diameter 455.7
Cylinder 6.67 Small diameter 413.3
Card 0.085 Lateral (key) 144.5
Box 9.63 Large diameter 209.8
Box 9.63 Medium wrap (power) 505.5
Box 4.29 Small diameter 356.6
Box 1.76 Pinch 126.5
Marker 1.07 Writing tripod 105.0

thumb would close to a pre-set position first, then all 4
fingers would close at the same time after a 0.5 s delay.
Each participant had the opportunity to practice picking up
3 objects (separate from 10 test objects) until they indicated
they felt comfortable, mitigating the effect of experience.
Then, the participant was timed while they picked and placed
all 10 objects. These steps were repeated for each prosthetic
hand. Half of the participants started with the optimized
hand, while half started with the Ada hand.

We found that for all 7 trials, the time it took to complete
the task with the optimized hand was faster than with the
Ada hand (Optimized: x̄ = 59.7s, σ = 6.1s, Ada: x̄ =
97.7s, σ = 32.0s). We noticed that the speed of opening
and closing the optimized hand was faster than opening and
closing the Ada hand. Thus, we calculated the time it took
for each hand to open and close once (Optimized: 1.16s,
Ada: 2.86s) and subtracted the difference (multiplied by 10
objects) from each participant’s task time with the Ada hand
to correct for this possible explanation of the results. Even
with this correction, 5 of the 7 trials were still faster with the
optimized hand (Ada corrected: x̄ = 80.7s). These results
suggest that the optimized hand is able to more easily grasp
a wide range of objects and is more intuitive to use.

C. Grasp Success Rate using EMG

As the final experiment, we used EMG signals for user
intention detection and employed a real-time classification
system to predict the gesture from 3 possible grasp types.
In order to keep the classification problem relatively simple
while still being able to grasp a wide range of objects, we
designed the experiment using medium wrap, large diameter

and pinch grasp types [27]. The resting state is also included
in the gesture set for releasing the object after grasping [28].

For this experiment, the user first performed each ges-
ture stationary for 1 second while the muscle activity was
recorded using a Myo armband at 50 Hz sampling frequency.
This protocol was repeated 10 times as calibration. After
calibration data collection was completed, the root-mean
square, mean absolute value and variance values of trials
were evaluated [29] for prediction. An Extra Tree Classifier
was trained using 5-fold cross-validation and learned model
parameters were saved for the real-time testing experiment.

During testing, the same features were extracted for the
EMG data sampled at the same frequency, and the probabil-
ity distribution for the selected grasp set was calculated using
the calibration model. When the calculated probability for
one gesture reached 70% confidence, the grasp command
was sent to the hand. To perform a pick and place task,
one author selected the grasp type using the Myo armband
while another author positioned the hand. We selected 3
everyday objects for each grasp type (total of 9 objects)
and repeated the experiment using both the optimized hand
and the Ada hand after randomizing the object order. We
recorded the total time for each trial in addition to EMG
misclassifications, failed grasps, and drops. The optimized
hand had a grasp success rate of 93.5% (2 failed grasps
and 0 dropped objects over 31 total grasp attempts), and
on average it took 91.7 s to pick and place all objects. By
comparison, the Ada hand had a grasp success rate of 87.5%
(1 failed grasp and 3 drops over 32 total grasp attempts), with
an average time of 96.7 s. The time difference between the
optimized and the Ada hand is smaller in this experiment
than the previous experiment, we believe, because the time
taken to grasp an object is largely driven by the EMG grasp
selection process. The overall EMG success rate over both
experiments was 95.2%, with only 3 misclassifications over
63 grasps. The results of this experiment are similar to our
prior pick-and-place experiment; the optimized hand had a
higher grasp success rate and took less time to complete the
task than the Ada hand.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new methodology for the
kinematic optimization of an anthropomorphic hand based
on maximizing finger workspace intersection and graspable
object size. Using results from the optimization, we built a
3D printed prototype of the hand and evaluated its perfor-
mance and capabilities. Our calculations suggested that the
optimized hand should be able to grasp objects ranging in
size from 0 to 12.6 cm, and with our prototype we success-
fully grasped objects ranging in size from 0.085 to 12.8 cm.
We also showed that, compared to another anthropomorphic
3D-printed hand, the optimized hand grasps objects more
quickly and is more successful in grasping and holding
objects. Finally, we demonstrate the ability to grasp objects
using real-time EMG classification to select grasp type.
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TABLE V
COMPARISON WITH POPULAR PROSTHETIC HANDS

Hand Height Joints Actuators Weight Cost
Ottobock Bebionic [21], [22] 188 mm 10 - 616 g ∼ $10,000
Ottobock Michelangelo [23], [24] 180 mm - - 510 g ∼ $60,000
Open Bionics Hero Arm [25], [26] - 8 3 or 4 280-346 g ∼ $3,000
Open Bionics Ada Hand [20] 180 mm 10 5 360 g ∼ $400
Optimized hand (this study) 203 mm1 10 5 333 g < $175

A major contributor to this improvement is likely the
2-DoF opposable thumb on the optimized hand. This de-
sign choice improves grasp quality and ease of grasping.
Moreover, because the hand was designed to optimize its
ability to grasp small and large objects, it is able to grasp
a wide variety of objects more easily and quickly than
the Ada hand, whose design is not optimized for grasping.
Table V compares our optimized hand with some existing
prosthetic hands. Our hand is significantly cheaper and fairly
lightweight, although presumably much less robust than the
more expensive options. Another advantage of our design
methodology is that the input parameters (such as range
of finger lengths or palm dimensions) of our hand can be
customized for different users, resulting in a smaller or larger
hand depending on the age or size of the amputee. In the
future, the hand can be made more durable for practical use
as a prosthetic. Furthermore, to improve performance and
usability, 3D force sensors, such as those discussed in [28],
can be embedded to enable force control during grasping.
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