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Abstract—In this paper, we investigate the use of 3-dimensional
force sensors in a prosthetic hand. 3-dimensional force sensing
in prosthetics can be used to incorporate intelligent grasping
capabilities, allowing the hand to automatically adjust its grasp
or release an object when appropriate. This can significantly
decrease the burden on the user as well as increase the function-
ality of the prosthetic. Coupled with an underactuated hand, this
opens up possibilities for highly functional, affordable prosthetic
hands. In this work, we present our design of 3D magnetic force
sensors that are embedded within the fingers of an open-source,
3D printable underactuated hand. We implement a simple control
scheme using both shear and normal force readings to automate
grasp release. Finally, we combine this force control with EMG
grasp detection for a series of pick-and-place tasks. Preliminary
results suggest that intelligent grasp control imposes less of a
burden on the user than a completely EMG-based grasp control.

Index Terms—Force sensing, smart prosthetic, intelligent
grasping

I. INTRODUCTION

Despite significant advances in state-of-the-art hand pros-
theses, there remains a distinct trade-off between functionality
and affordability for actuated hands. The high cost of pros-
theses is largely driven by the need for extremely precise
actuation and sensing and complex control. This level of
precision is needed for rigidly actuated hands, which describes
the majority of commercial prostheses.

Underactuated hands, such as those in [1], [2], and [3],
are becoming increasingly appealing to researchers as a way
to decrease the complexity and cost of a hand. While rigid
hands require high degrees of actuation and precise position
control to facilitate multiple grasp types and grasp a variety of
objects, underactuated hands have the advantage of being able
to adaptively conform to whatever object is being grasped.

Neuromuscular driven upper-limb prostheses have also been
the focus of an increasing number of researchers due to their
potential for easing the lives of millions worldwide. The higher
signal-to-noise ratio of the surface electromyogram (EMG)
signals is considered one of the most appealing pathway
to convey user’s intentions to the prosthetic limb. In most
applications, simple open and close EMG commands are
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given by a user, who has to manually select a grasp type.
In [4], Günay et. al. represent all useful muscle patterns as
combinations of a small number of generators, and in doing
so can detect multiple grasp types from a user. A potential
problem with this approach, depending on the implementation,
is that the user must maintain the desired grasp type to keep the
prosthetic hand in the desired pose. This can place unnecessary
burden on the amputee when grasping objects for extended
periods of time.

One way to alleviate this burden is by incorporating force
sensors to enable intelligent grasping capabilities. Normal
force in prosthetic hands (Figure 2a, blue arrow) is extremely
useful as it allows the control of grasp force, which is
crucial to a stable grasp. Shear force (Figure 2a, orange and
yellow arrows) is also crucial to grasp stability, and having
sensors that measure shear force can enable more complex
functionalities, such as identifying when an object is lifted or if
it slips. This can in turn help reduce the burden on the amputee,
who now does not need to actively think about maintaining
their grasp on an object.

In this work, we present a 3D magnetic force sensor em-
bedded in an open-source, affordable advanced prosthetic. Our
3D printable hand, built off Open Bionics’ open-source Ada
hand [5], is underactuated to allow for compliant grasping. It
additionally is equipped with embedded custom 3-axis force
sensors, enabling force control with the hand using shear
and normal forces. To capture user intent, we use the Myo
Armband to acquire EMG data and employ an Extremely
Randomized Tree (Extra-Tree [6]) Classifier to predict the
user’s grasp type.

II. PREVIOUS WORK

Force sensors that detect contact forces are the most com-
monly used for grasping applications. Force sensitive resistors
(FSRs) are commonly used to control the grasp force of a hand
on an object [7], [8]. In [9], Koiva et al. create a 3-dimensional
sensor composed of multiple FSRs on a curved surface, which
is form fit to the fingertip. This sensor can measure the normal
force at multiple contact points around the fingertip, enabling
them to pinpoint more precisely where contact forces are
applied. This type of contact-force control is extremely useful,
as it can be used to prevent excessive deformation of grasped



objects, but cannot provide information about shear forces or
object slip. Some works have explored using FSRs for slip
prevention in addition to traditional grasp force control [10],
[11], but these methods require extensive signal processing to
obtain a slip signal from an FSR, and additionally still lack
the ability to read shear forces directly.

Less commonly used sensors in prosthetic grasping appli-
cations are those that measure shear force. In [12], the authors
develop a fingerpad-like sensor that uses 2 strain sensors to
measure shear force. The sensor works much like a human
fingerpad- when a shear force is applied to a microfluidic skin,
the skin is deformed in the direction of applied shear, causing
tension in one strain sensor and compression in the other. In
[13], authors present an optical based sensor that can measure
shear force in 2 axes. Authors in [14] use multiple strain gages
on a single finger to detect shear force at multiple locations on
the finger, and perform proportional, proportional-derivative,
and slip-prevention control on a robotic gripper. These sensors,
unlike contact force sensors, can provide useful information
about slip and shear force without too much complexity.
However they cannot measure normal forces, which limits
their ability to be used for grasp force control.

Numerous examples of sensors combining shear and normal
force readings exist in the literature. Sensors described in [15]
and [16] use optical-based sensing to measure shear and nor-
mal forces. In [17], authors map a change in capacitance, either
from decreased distance or decreased area between two plates,
to a 3 dimensional force. Similarly in [18], authors present
promising results using a capacitive sensor to measure shear
and normal forces on human fingers during object grasping.
Authors in [19] present a magnetic force sensor that uses a 3-
axis hall effect sensor and magnet to measure 3 dimensional
forces. These sensors, as well as the majority of other force
sensors, have one major flaw. The biggest shortcoming for
many sensors is that they have a very small contact area for
which they can measure forces. They may work well if the
finger contacts an object on the exact location of the sensor,
but if contact occurs anywhere outside the sensor, the sensor
cannot read any forces.

Few researchers have addressed this problem, and as a result
almost all existing force sensors meant for prosthetic hands
have a small contact area. In [20], Nasir et al. embed two
small load cells in the tip of each finger on a 3-fingered robotic
gripper. Because the load cells are embedded in the structure
of the finger, the sensor is less limited in location of applied
force compared to many other sensors. However, the load
cells can only measure compressive forces, so these fingers
only measure force in 2 directions- normal force applied to
the front of the fingertip and normal force applied to the
top of the fingertip. In [21], Park et al. develop hollow,
cylindrical robotic fingers with Fiber Bragg Grating sensors
embedded within the finger structure. Each finger, using 4 FBG
strain sensors, can measure longitudinal location (length along
finger), latitudinal (circumferential) location, and magnitude of
an applied force. These sensors, while quite effective, require
highly specific equipment to obtain meaningful data from

Fig. 1. Embedded hall-effect sensor. As the fingertip is deflected relative
to the rest of the finger, the magnet moves relative to the hall-effect sensor,
causing a change in magnetic field.

raw sensor signals, and are relatively expensive. Signals from
our sensors are directly related to force, so meaningful force
data can be obtained in real time from most microprocessors.
Finally, the SynTouch BioTac sensors have been incorporated
into numerous state-of-the-art systems ( [22], [23]), due to
their impressive ability to detect 3D forces, vibrations, and
temperature. However their cost of about $15, 000 per sensor
makes them incredibly impractical for any application where
low cost is desired.

We present an affordable novel force sensor that measures
3-dimensional forces applied anywhere on the fingertip. To
the best of our knowledge, no other 3D force sensor like this
exists that is embedded within the finger itself. Furthermore,
the sensors are extremely affordable (about $6 per sensor), and
can be used to implement intelligent grasping capabilities in
the hand to decrease the burden on the user.

In the remainder of the paper, we present the force sensor
design, a real-time EMG classification framework (Section II),
the grasping experiments performed using the sensors (Section
III), and conclusions and future work (Section IV).

III. MATERIALS AND METHODS

A. Force Sensor Design

Our force sensor is based on the magnetic sensing technol-
ogy presented in [19], and is embedded within the finger link
itself. The sensors are embedded in the Open Bionics Ada
Hand, which we modified to fit our needs. The Ada Hand is
a 5-fingered anthropomorphic underactuated hand, with five
linear actuators driving 5 tendons, one for each finger. The
entire hand is 3D printed out of Ninjaflex, a flexible filament.

Figure 1a shows the final design of the sensor and fingertip.
Each finger has a rectangular cavity, with grid-like side walls,
also 3D printed from Ninjaflex, to keep the finger together
and guide the deformation of the fingertip. At the bottom of
the cavity, attached to the bottom portion of the finger, is a
PCB with a 3-axis hall-effect sensor. At the top of the cavity,
attached to the top portion of the finger, is a small magnet.
The cavity itself is filled with silicone (Ecoflex 00-30) to hold
the PCB and magnet in place, as well as to add stiffness and
prevent excessive deformation of the fingertip. Figures 1b and
1c show the built sensor without and with silicone.

During grasping, if a finger makes contact with an object
anywhere on the fingertip above the sensor, the top of the fin-
gertip is deformed in some direction relative to the bottom of



Fig. 2. The embedded sensor can read changes in force in 3 dimensions. An
applied normal force results in a change in Bx, shear force caused by a side
grasp changes By, and shear force caused by a top grasp changes Bz.

the finger, moving the magnet relative to the hall-effect sensor.
This results in a shear or normal force reading, depending on
the direction of applied force. Figure 2 shows the raw x-y-z
magnetic field readings from as sensor when pushed first in
the positive x (normal) direction, then the negative y (shear
during a side grasp), and finally negative z (shear during a
top grasp). When the fingertip is pushed in a given direction,
the magnetic field on that axis changes the most significantly.
The other two axes also change, although much less so, as
it is almost impossible to move the fingertip in one direction
without it also deforming slightly in the others.

B. Force Sensor Calibration

Each fingertip force sensor was calibrated using a load
cell. For each finger, force sensor and load cell data were
recorded as the fingertip was pushed against the load cell in the
positive normal direction and in the positive and negative shear
directions. This data provided a calibration constant for each
finger and each direction that would relate the force sensor
reading with an actual force, in grams. Because the sensor
is more directly measuring deflection than actual force, the
sensor reading for a given force depends on where along the
fingertip the force is applied.

Figure 3 shows the x and y magnetic field readings of the
thumb sensor when a 150g weight is hung from it, applying a
force in the normal direction. On the left side of the graph the
weight is hung as close to the sensor as possible, whereas on
the right side it is hung closest to the end of the thumb. The
moment and hence the displacement is larger the farther the
force is applied from the sensor, so there is a larger reading on
the right side of the graph than on the left side, for the same
applied force. For our calibration, we used the center of each
fingertip as consistently as possible for each push against the
load cell. However we recognize that this calibration is not
perfect, and that forces obtained during grasping experiments
inherently contain some error.

Figure 4a shows a sample data set before and after calibra-
tion. In this case, a force was applied in the positive shear
direction of the thumb. To achieve this, the side of the thumb
was pushed against the load cell 5 times. The top graph shows

Fig. 3. Depending on the location of the applied force, the sensor reading
changes. For a constant applied force of 150g (1.47N) in the normal direction,
the raw Bx reading varies from 140mT when applied closest to the sensor, to
175mT when applied closest to the tip.

that the normal force stays close to zero throughout the test,
and the shear force and load cell seem to change proportionally
to each other but with different magnitudes. A constant was
calculated for each peak in the load cell and force sensor data,
and a single calibration constant taken as the average of these.
For this set of data the calibration constant is 0.873, and once
this is applied to the shear force it very closely matches the
load cell reading (Figure 4b).

C. EMG Acquisition and Real-Time Classification

EMG classification used in this work can be grouped in
two categories: calibration and real-time testing. To calibrate
the EMG classifier, surface EMG data sampled at 50 Hz
was recorded for 5 sessions from 8 channels. Each session
consists of a 5 second recording for each class. The subject
was asked to perform a particular gesture and maintain the
gesture until the trial time was over. After the recording was
completed, the protocol was repeated for another gesture, and
again until calibration data was collected for each gestures 5
times. Since the recorded gesture labels were known during
data acquisition, the labels and EMG time samples were fed
to an Extra-Tree classifier for training an offline model. The
model was trained in Python using the scikit-learn library
(number of trees was assigned as 10, the nodes were expanded
until all leaves were pure or until all leaves contained less
than 2 samples). The trained model was conveyed to the real-
time classification framework where the test EMG data was
sampled at the same frequency. The buffer length was selected
as 20 samples and the confidence threshold as 80%. After the
first 20 samples, the classification was run and if the threshold
confidence was exceeded the gesture label was sent to the



Fig. 4. Normal and shear force readings before (in mT) and after (in g)
calibration with a load cell. This graph shows the calibration results from an
applied shear force on the thumb.

Fig. 5. With EMG, a user can select between open, medium wrap, and pinch
grasp types for the robotic hand.

prosthesis. However, if the model confidence was not satisfied
after the buffer size, a new sample was collected by employing
a stock data structure until the threshold was satisfied.

IV. EXPERIMENTAL RESULTS

A. Force Control with Automatic Release

Using these sensors, we implemented simple force control
using normal and shear forces. The controller is designed for
pick-and-place tasks, to realize and maintain a stable grasp on
an object and automatically release it when the user places the

Fig. 6. State machine diagram of simple normal and shear force control of
a hand.

object on a table. For simplicity, we chose to focus on lifting
using side grasps, so we only used the y-direction shear force
and neglected the z-direction shear force that changes during
a top grasp lift. The control scheme, shown in Figure 6 has
four states: Grasping, Stable Grasp, Lifting, and Release.

First, a grasp command is sent by the user, which can be
either a medium wrap or pinch. Once this command is sent,
the hand enters the “Grasping” state, at which point it closes
its fingers until the normal force reaches en experimentally
determined normal threshold. Once this normal threshold is
reached, the hand has a stable grasp on the object, and it
enters the “Stable Grasp” state. Here it begins monitoring the
shear force in the fingers. If the shear force is below some
shear threshold, the hand remains in the stable grasp state, but
if it increases above the shear threshold, the hand is lifting
an object and it enters the “Lifting” state. Here it continues
to monitor the shear force. If the shear force stays above the
shear threshold value, the hand stays in the lifting state, and if
it drops below the shear threshold the object has been placed
back on the table (or someone’s hand), so it switches to the
“Release” state, at which point it opens the fingers to release
the object.

B. Preliminary User Test with EMG

To validate the usefulness of the automatic-release force
control, we performed a series of pick-and-place tasks using
the automatic release. For these experiments, a single experi-
enced user selected either a medium wrap or pinch grasp for
the hand using EMG. The user assumed a hand posture corre-
sponding to the desired grasp type, maintained this posture for
1-2 seconds, then relaxed her hand as the robotic hand took
control of grasping. A second person held the robotic hand in
position to grasp, lifted it once it had grasped the object, and
placed it back down a predetermined distance away from the
object’s starting location. We performed pick-and-place for 9
objects; 5 were grasped using both grasp types, and 2 objects
each were grasped using just a medium wrap and just a pinch
grasp. Each grasp was repeated until it has been successfully
completed 4 times, so a total of 14 successful grasps were
completed for each grasp type per trial. This entire experiment
was repeated without automatic grasp release, where the user
maintained hand posture for the selected grasp type for the



entire pick-and-place task and relaxed her hand at the end
to release the object. A link to a video of the task can be
found in Section VI Additional Materials. Figure 7a shows
a grasping sequence during an experiment with the automatic
grasp release, while Figure 7b shows a grasp sequence without.
In the top image, the user’s hand is relaxed for the majority of
the pick-and-place task, while in the bottom image her hand is
tense for the entire task, until she relaxes it to send a “release”
signal to the robotic hand.

Figures 8 and 9 show the shear and normal force readings,
motor inputs, grasp state, and EMG state during two pick-
and-place tasks. The EMG state (dashed black line) is at 200
for a medium wrap and 400 for a pinch grasp. The grasp
state (solid black line) is 0 for “Open” or “Release,” 200 for
“grasping,” 300 for “Stable Grasp,” and 400 for “Lifting.” A
motor value of 0 corresponds to the finger being fully open,
and 950 corresponds to completely closed.

Figure 8 shows a pinch grasp pick-and-place task using the
automatic release feature. Initially the fingers are all open.
After an EMG grasp command is sent, the grasp state changes
from “Open” to “Grasping,” at which point the fingers begin
to close. They close until the normal force threshold is reached
for both the thumb and index finger (in this case about 30g
and 70g respectively), then maintain their position. The state
changes to “Grasping,” and the shear and normal forces remain
mostly constant while the hand maintains its current pose. Now
the hand monitors the shear forces, and when they significantly
change, the grasp state changes to “Lifting.” Again, the hand
maintains its pose, and once the object is in the air the shear
and normal forces remain fairly constant. Finally, the object
is placed on the table, which is recognized by another large
change in shear force, at which point the grasp state changes
to “Open,” the fingers open, and the forces go back to zero.

Similarly, Figure 9 shows a medium wrap pick-and-place
task without automatic grasp release. Here there is one fewer
grasp state (no “Lifting” state), and the EMG state remains a
medium wrap for the duration of the task. The force profiles
are similar to those in Figure 8a, with the addition of the
middle finger forces. A noticeable difference between the
graphs in Figures 8 and 9 is the amount of time between object
placement and release. With the automatic release enabled, this
transition is almost immediate, but without it there are multiple
delays introduced. There is almost a full second between when
the object is placed and the user relaxes her hand to release the
object. Then the EMG classifier recognizes the relaxed/open
state for a short time before mistakenly registering a pinch
grasp, and then sending a final release command and opening
the fingers.

For these experiments, a total of 56 pick-and-place tasks
were successfully performed for each grasp type. Half of these
were using automatic grasp release and half used EMG signals
to command the hand to open. The entire experiment was
performed by a single user who had considerable experience
with the EMG system. While using the automatic release,
objects were dropped mid-task more often than with EMG-
release, especially for a medium wrap grasp type. We suspect

TABLE I
PICK-AND-PLACE RESULTS COMPARISON FOR AUTO-RELEASE AND

EMG RELEASE CONDITIONS

Auto-release EMG release
Number of Trials 70 63
Med. Wrap Trials 39 30
Pinch Trials 31 33
Drops Med. Wrap 3 0
Drops Pinch 1 1
Failed Release Med. Wrap 3 2
Failed Release Pinch 3 4
Extended EMG Misclassification 13 25
Med. Wrap Success Rate 84.6% 93.3%
Pinch Success Rate 87.1% 84.8%
Overall Success Rate 85.7% 88.9%
EMG Classification Error Rate 18.6% 39.7%

the large number of drops is due to the grasping quality of
the hand itself; due to its underactuated and compliant nature,
the fingers can be easily shifted mid-grasp, causing changes in
shear force that cause the hand to release an object too soon.
On the other hand, the automatic release control had a slightly
higher success rate in releasing objects upon placement than
the EMG-release. When trying to release objects with EMG,
there was sometimes a false grasp classification after the initial
release, causing the hand to remain closed. We believe this is
caused by muscle fatigue from maintaining an uncomfortable
hand pose for extended periods of time during the EMG-
release tasks. As the experiment progressed, the user became
more tired and had more difficulty maintaining the the desired
hand pose, which caused errors in the EMG classification. This
was not a problem with automatic release, as the user was able
to keep a relaxed hand for the entire task, after briefly choosing
the grasp type.

We also found that there were significantly fewer EMG
classifier errors in the trials with automatic grasp release
than those with EMG grasp release. In the 70 trials using
automatic grasp release, there were 13 trials where the EMG
classifier was incorrect for a sustained time of greater than
0.25 seconds. By comparison, 25 out of 63 tasks performed
using EMG release had a similar EMG classification error.
This means that at any point in the task, the EMG grasp type
was different from what the user intended for at least 0.25
seconds, which was enough time in some cases to cause the
fingers to move undesirably. As with the failed releases, we
believe this classification error stems from the user’s fatigue
from maintaining a desired grasp during the EMG release
tasks.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present the design and calibration of a
3D force sensor embedded in the finger itself. Unlike most
existing sensors, its structure allows force to be measured in
any direction no matter where it is applied on the fingertip,
and is not limited to a small contact area. With the sensors
embedded in an underactuated hand, we implemented a simple
yet effective force control scheme using shear and normal
forces to automate object release during pick-and-place tasks.



Fig. 7. Grasp sequence of a pick-and-place task. (a) Shear force is monitored to enable automatic release of the object, so the user can relax her hand for
the majority of the task. The user’s hand is tense only when initially selecting a grasp type (in this case Medium Wrap). (b) The user manually releases the
object with EMG, thus the selected grasp type is maintained by the user through most of the task. The user’s hand is tense during the majority of the task,
potentially causing fatigue over time.

Fig. 8. Index and thumb forces and motor positions and EMG and Grasp
states during a pick-and-place task with automatic grasp release enabled. The
object is quickly released once it is placed on the table.

Comparing this to experiments where the user manually re-
leased the object using EMG, we found slight improvements
in reliability of object release, as well as a decreased burden
on the user.

This preliminary work shows promising results for the
use of these sensors in prosthetic applications and intelligent
grasping. Our next steps are to incorporate the z-axis force
reading to enable automatic release for top grasps and to
further characterize the sensors. Currently, each sensor behaves
differently due to manufacturing imperfections, and we hope
to better standardize them, making them more consistent and
easier to work with. Additionally there is some amount of drift
present over time, as the fingertips often retain a very small
amount deformation for some time after the force is removed.
In the future we hope to eliminate this drift to make the sensors
even more reliable. Besides the sensors, the hand itself presents
problems due to its compliant nature and limited degrees of
freedom. We would like to add slightly more rigidity to it to
achieve more predictable behavior and more ideal force sensor

Fig. 9. Index, middle, thumb forces and motor positions and EMG and Grasp
states during a pick-and-place task with automatic grasp release disabled.
There is a significant delay between when the object is placed on the table,
when the user sends the release command, and when the object is actually
released.

readings, as well as thumb opposition to achieve better grasp
quality. Finally, we plan to complete more comprehensive user
testing, with both experienced and inexperienced users, to
explore whether the automatic grasping capabilities make the
system more intuitive.

VI. ADDITIONAL MATERIALS

Below is a link to a video demonstration of our pick-and-
place experiments:

https://www.dropbox.com/s/z5ubcqve40xuiht/
IEEEBionics2019Video.mp4?dl=0
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