Intuitive Control of a Robotic Arm and Hand System with Pneumatic Haptic Feedback

Sihui Li, Raqgni Rameshwar, Ann Marie Votta, and Cagdas D. Onal, Member, IEEE

Abstract—Robot teleoperation is a transformative field that can enable workers to safely perform tasks in dangerous environments. In this paper, we present our work towards a teleoperation system with safe, realistic force feedback for intuitive control of a robotic arm and anthropomorphic robotic hand as its end effector. The system interfaces with the user via a novel data glove, which detects the state of the hand using inertial measurement units (IMUs) and custom curvature sensors, and employs pneumatic muscles to provide force feedback. We use this glove to control a Kinova Jaco robotic arm and a custom 3D printed hand with embedded force sensors. We tested the functionality of this system in a grasp quality experiment and a full teleoperation test. With haptic feedback, users were accurately able to differentiate between secure and insecure grasps. In user testing with the full system, all users were able to complete a series of ten pick-and-place tasks. Inexperienced users with only 5 minutes of training completed all tasks in an average of 55.1 seconds, while experienced users with 0.5 to 2 hours of practice took an average of 34.6 seconds.

Index Terms—Soft Robot Applications; Telerobotics and Teleoperation; Haptics and Haptic Interfaces

I. INTRODUCTION

RobotIC systems are becoming indispensable on factory floors [1], in hospitals [2], and for space and ocean exploration [3]. As robots become stronger and more durable, they are replacing humans for remote or dangerous tasks. State-of-the-art autonomy is often not sufficient to handle tasks in unpredictable environments. As such, these tasks benefit from teleoperation systems in which a human remotely and safely controls the robot [4]. The success of these teleoperation systems depends on both the control method and the existence of feedback [5][6].

In this paper, we propose a novel teleoperation system using soft robotic principles, building on our previous work [7]. A data glove system captures user movements using inertial measurement units (IMUs) and custom curvature sensors that detect finger bending using the signal between an infrared LED and receiver. The user movements control a 6 degree of freedom (DoF) robotic arm (Kinova Jaco) and five-fingered anthropomorphic hand. The robotic hand is equipped with soft force sensors that detect grasp forces, which are transmitted to the user through soft pneumatic actuators. The result is a safe and intuitive system that can be used with very little training (Figure 1).

Fig. 1. In the proposed teleoperation system, a user wears the haptic glove and controls commercial 6-DoF robotic arm and a robotic hand as its end-effector.

A. Existing Work

1) Control Methods: There are two main categories of control methods for teleoperation. One category uses small hand-held controllers such as joysticks, keyboards, computer mice, and touch screens [4]. Due to limited DoF, hand-held controllers pose a challenge when controlling robots with many degrees of freedom, such as robotic arms. In [8], joystick control of a robotic arm requires unintuitive mode changes between position, orientation, and gripping control.

The other category of controllers captures natural body movements to control a robot, resulting in a more intuitive system. Motion capture systems use cameras, body markers, and computer vision to detect user position [9]. While the measurements are accurate and the control seems intuitive, it results in a large, stationary, and expensive system. In contrast, data gloves are wearable devices that use sensors such as accelerometers and gyroscopes to track a user’s movement [10]. Data gloves are becoming increasingly popular for teleoperation due to their lightweight and portable form factors.

In [11], the authors present a novel data glove using 18 IMUs to track a users arm and finger movements. The glove is relatively inexpensive and lightweight, but has several drawbacks. Firstly, the authors require that a users body stays
stationary, which can result in an awkward user experience. Secondly, high-quality IMUs are expensive, and inexpensive IMUs are highly prone to drift. In contrast, our teleoperation system detects a user’s palm position and orientation relative to their shoulder, allowing them to move during teleoperation. In addition, using curvature sensors to measure finger positions reduces the number of IMUs to three.

2) Feedback Methods: Haptic feedback is an important aspect of an effective teleoperation system [5]. There are several modes of haptic feedback, which vary in effectiveness depending on the application. Tactile feedback is transmitted using vibration, temperature, or pressure close to the skin and usually indicates initial contact with an object. Force feedback is transmitted by applying a force to a user’s body and can indicate a resistive force, such as grasping an object [12]. In some cases, this force can stop a user’s movement, for example by preventing their fingers from closing [13]. In others, the user’s movements are not hindered by the force [14]. Force feedback is an effective way to transmit quality-of-grasp to a user, and enhances grasp stability and allows for more delicate manipulation [6].

In [15], the authors present the RML glove to control a mobile robot. As the robot approaches an object, the user’s finger movements, which control the speed of the robot, are limited to prevent collisions of the robot with other objects. Another glove, presented in [16], uses three servos to provide 3-DoF feedback to one fingertip. In both these cases, the force feedback method is bulky and expensive. Additionally, attaching tendons to a user’s fingers poses a risk of injury if the system pulls the user’s fingers past their comfort level. Our proposed force feedback method is pneumatically driven using very low pressure, making it a lightweight and safe alternative.

The ExoPhalanx [13] is a haptic glove that uses a shape memory alloy (SMA) driven brake to stop the user’s fingers from bending once they pass a given threshold. This device is soft, wearable, and non-bulky, but locks the users fingers into a fixed position while transmitting feedback. Another glove, proposed in [17], uses soft inflatable chambers under the user’s fingers to provide initial contact feedback. Our proposed system detects and relays contact for the duration of a grasp, enabling more accurate object manipulation.

Table I compares our current teleoperation system with many of the systems described above. We chose parameters that are important to a teleoperation system, such as weight, cost, time to learn, and capability. Some of the papers did not report pick-and-place test times, and others did not perform a pick-and-place task.

B. Contributions

We present a novel teleoperation system that controls a 6-DoF robotic arm with an attached anthropomorphic robotic hand using an intuitive control scheme and safe force feedback. The system is lightweight (213g), inexpensive (less than $150), and user friendly. Using principles of soft robotics, it accurately reads external grasping forces and safely transfers them to a user. Our specific contributions are as follows:

1) Pneumatic haptic muscles that are lightweight, safe, and provide realistic kinesthetic feedback to a user.

2) Soft magnetic force sensors embedded in a compliant robotic hand used for teleoperation.

3) Custom optical curvature sensors that detect finger curvature in a lightweight, cost-effective form factor.

4) An intuitive teleoperation system based on IMUs where the user may move freely during operation.

In the remainder of this paper, we will present the system overview (II), design and validation of each subsystem (III), and user testing (IV).

II. SYSTEM OVERVIEW

The proposed teleoperation system consists of three major subsystems: a custom-built haptic glove worn by the user, a commercially available robotic arm, and a 5-fingered robotic hand mounted to the arm’s end effector. The three subsystems are connected through ROS (Figure 2), which passes information across the whole system.

The haptic glove reads the user’s hand position and orientation relative to their shoulder, as well as the curvature of their fingers. The pose is converted to joint angles for the robotic arm, and the finger curvatures map to joint angles on the robotic hand. As the user moves their arm and fingers, the robotic arm and hand mirror the user’s movements.

The robotic hand contains soft force sensors at the fingertips that detect grasp forces during teleoperation. These forces are converted to signals that activate pneumatic actuators mounted to the glove. As the actuators inflate, the user experiences a grasp sensation that mirrors the robotic hand’s forces.

The system as a whole offers the user a telepresence experience, in which the movements and sensations of the robot system are directly associated with their own.

III. SUBSYSTEM DESIGN

A. Haptic Glove

The haptic glove is a soft wearable glove system with sensors and actuators for data collection and force feedback. It consists of curvature sensors, IMUs (Adafruit BNO055), and pneumatic haptic muscles. The IMUs mount to the user’s palm, forearm, and upper arm with adjustable bands and report the relative angles of the user’s arm and wrist (Figure 3).
TABLE I
COMPARISON OF TELEOPERATION SYSTEMS

<table>
<thead>
<tr>
<th>Name</th>
<th>Teleoperation Method</th>
<th>Feedback Method</th>
<th>Weight of Glove</th>
<th>Cost</th>
<th>Training Time Given</th>
<th>Avg Time to Complete Pick-And-Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joystick Modal Change [18]</td>
<td>Joystick</td>
<td>Visual Only</td>
<td>N/A</td>
<td>Not Reported</td>
<td>5 minutes</td>
<td>~450s</td>
</tr>
<tr>
<td>RML Glove [15]</td>
<td>Etoskeleton with Encoders</td>
<td>DC Motor and Cable System</td>
<td>180g</td>
<td>Not Reported</td>
<td>5 minutes</td>
<td>N/A (Not Pick-And-Place)</td>
</tr>
<tr>
<td>ExoPhalanx [13]</td>
<td>Cyberglove, Motion Capture</td>
<td>SMA Brake</td>
<td>>540g</td>
<td>>$13,000</td>
<td>Not Reported</td>
<td>N/A (No Pick-And-Place Performed)</td>
</tr>
<tr>
<td>CICG [19]</td>
<td>Commercial Data Glove, IMUs</td>
<td>Vibration Motors</td>
<td>300g</td>
<td>~$3,500</td>
<td>N/A</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Electro-Tactile Telerception [20]</td>
<td>PS Virtual Reality Glove</td>
<td>Electro-tactile Feedback</td>
<td>28g</td>
<td><$250</td>
<td>5 minutes</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pneumatic Haptic Glove (this work)</td>
<td>Custom Data Glove, IMUs</td>
<td>Pneumatic Haptics</td>
<td>213g</td>
<td><$150</td>
<td>5 minutes</td>
<td>30-120 minutes</td>
</tr>
</tbody>
</table>

![Image of IMUs and Haptic Muscles](image)

Fig. 3. The haptic glove system consists of curvature sensors and haptic muscles mounted to the glove and three IMUs secured with adjustable bands. The IMUs are placed on the user’s palm, forearm, and upper arm.

![Image of Analog Signal](image)

Fig. 4. When the user’s finger is straight, light from the LED reaches the receiver, resulting in a high signal. As the user gradually curves their fingers, the light is blocked, resulting in a low signal. This provides an accurate reading of the user’s finger curvature.

1) Curvature Sensors: To detect the curvature of the user’s fingers, we use optical curvature sensors mounted to the fingers of the haptic glove. Each sensor contains an infrared LED and receiver connected by a black tube to block external light. When the user’s finger is straightened, the LED and receiver are directly facing each other and the signal from the receiver is high. When the user’s finger is curled, the signal is low, as shown in Figure 4. Because there is no resistive component to this sensor, the readings do not suffer from drift and other inconsistencies. We map the signal from each finger to a corresponding finger position on the robotic hand, thus mirroring the user’s movements.

2) Haptic Muscles: The goal of our feedback system is to be as realistic as possible when conveying grasp forces. When a person grasps a cup, their fingers are unable to close past the cup’s surface. This force that prevents their fingers from curling further is what the haptic muscles replicate.

The haptic muscles are pneumatic actuators manufactured from heat sealable plastic. The plastic is cut and sealed into a pouch, then rolled into a toroid shape to fit around the user’s fingers. When deflated, the haptic muscles do not hinder the user’s movements, as the plastic is fairly soft. As they inflate around the user’s fingers, they exert a gentle force that straightens the knuckle and feels similar to the force exerted by a real grasped object (Figure 5). By regulating the pressure with solenoid valves and pulse-width modulation (PWM) control, we apply varying levels of pressure (from 0 to 5psi) to indicate a weaker or stronger grasp.

To measure the force exerted on a user’s fingers, we mounted a haptic muscle to a 2-link 3D-printed finger with a freely rotating joint, and tied the fingertip to a load cell as shown in Figure 5(b). As we pressurized the haptic muscle by increasing the PWM input, the finger attempted to straighten and pulled on the string, applying a measurable force on the load cell. Figure 5(c) shows the force versus PWM values for one cycle of increasing and decreasing pressure. Because increasing the pressure involves pushing air into the actuator, and decreasing pressure lets the air leak into the atmosphere, the haptic muscle deflates slower than it inflates, causing the observed hysteresis. Given the results from User Study 1 (Grasp Quality Test) presented in Section IV, it is clear that this discrepancy is not noticeable during operation. Both the increasing and decreasing pressures were accurate enough to communicate grasp quality to the users.

B. 5-fingered Robotic Hand

1) Hand design: The 5-fingered anthropomorphic robotic hand (Figure 6) is a modified version of the Open Bionics V1.1 Ada Hand, an open-source 3D-printable hand used as a research platform for prosthetic hands. The back of the hand is printed in PLA, while the palm and fingers are printed in Ninjaflex, a flexible filament produced by Ninjatek. The softer palm gives the hand some compliance while grasping,
and the flexible hinges in the fingers allow for an underactuated tendon-driven system with realistic motions. Because the fingers are partially compliant, they conform to many object shapes without needing to account for various grasp types. Therefore, it is possible to grasp many different objects using only a few grasp motions. This decreases the complexity for the user, and the complexity of the system as a whole.

The hand uses four linear actuators (Actuonix PQ12-R) to flex its fingers: one each for the first, second, and third fingers, and one for both the fourth and fifth fingers. The fingers extend passively when tension is removed from the tendons.

2) Soft Force Sensors: We modified the original Ada hand for our teleoperation requirements by adding soft force sensors at the fingertips. These sensors, shown in Figure 6, are located in a small chamber embedded in the fingertip. At the bottom of the chamber is a custom PCB (developed in [21]) with a 3-axis hall-effect sensor, and at the top is a small magnet. As the finger tip deforms, the magnet moves in the x, y, or z direction, causing a change in the magnetic field read by the hall-effect sensor. As this deformation is caused by an external force on the fingertip, we can use this sensor to measure the relative force on each fingertip from grasping objects.

The sensor chamber has 2 walls on the left and right sides, and on the front and back a small ninjaflex band connecting the walls to prevent buckling (Figure 6). This geometry results in high stiffness in the normal direction and low stiffness in the shear direction. This allows the fingers to be strong enough to grasp heavy objects but flexible enough to read changes in shear force. In Figure 7, we pressed the tip of the finger against a load cell, first in the normal direction (front of the fingertip) and then in the shear direction (side of the fingertip). Because the shear force readings were more sensitive, we chose to use the shear force to drive the haptic feedback.

C. Teleoperation Scheme

To demonstrate the usability of our robotic hand and haptic glove, we designed a teleoperation scheme using the Kinova Jaco arm. The goal is to build an intuitive mapping between the Jaco arm (6 DoF) and the human arm (7 DoF). Existing work on teleoperating the Jaco arm falls into three main categories: teleoperation with a handheld device [8], teleoperation with motion sensors [22], and teleoperation with visual interface [23]. In our previous work, we experimented with joint-to-joint mapping of Jaco arm, which requires users to limit their own motion because the Jaco has fewer DoF. In this work we explore end-effector (ee) mapping with the arm mounted upright to a table.

From a pilot study run in simulation testing various configurations and teleoperation schemes (Figure 8), we found that mounting the Jaco upright on the table was the easiest to use. We also found that ee mapping is fairly intuitive, since the user focuses more on the ee than the pose of the robot. We thus apply an end-effector mapping scheme to the physical robot using a table-top mounting position.

Since we have a different robotic hand from the Jaco arm’s original gripper, Jaco’s default inverse kinematic (IK) solver is no longer applicable. To solve the current IK, we use the \textit{trac_ik} package [24] with a modified robot definition

Fig. 7. Pushing the front of the fingertip in the normal direction against a load cell results in a linearly related change in force between the load cell and normal force. The result is similar when the side of the fingertip is pushed against the load cell in the shear direction.
Fig. 8. We tested four teleoperation schemes using three mounting points in simulation (Gazebo). Users played a game in which they attempted to reach a given end-effector pose and orientation (green) as quickly as possible.

Fig. 9. To calculate the latency of teleoperation, we teleoperate the robot in one axis and find the time difference between the robot and user’s highest and lowest points. The calculated latency is 1.07s.

We devised an experiment using only the data glove and the robotic hand to test the system’s ability to convey grasp quality with the soft force sensors and haptic muscles. A user wore the haptic glove and looked at a computer screen, which showed live footage of a table surface. One of the authors held the wrist of the robotic hand, and the user could see the hand and some objects on the screen. The author placed the robotic hand over an object so the object was partially or fully occluded, and the user closed their fingers to grasp the object. Using their view from the screen and the haptic feedback through the glove, the user reported whether the robotic hand was grasping the object securely or insecurely. After their guess, the author lifted the robotic hand and object to find the true grasp quality; if the object stayed grasped, it was secure, and if the object fell immediately or after a slight disturbance, it was insecure. After 1 to 3 minutes of practice, we recorded the true grasp quality and whether the user’s guess was correct or incorrect. We repeated this test for four objects both with and without haptic feedback, performing a total of 12 grasps per object (6 with and 6 without feedback). We then turned off the camera to test a user’s ability to determine grasp quality using only the haptic feedback they felt through the glove. Rather than identifying between a successful and unsuccessful grasp, we wanted to test levels of grasp security and asked users to rate the grasp from 1 to 3, 1 being least secure and 3 being most secure. After lifting the robotic hand, if the object fell immediately, the grasp would be rated a 1. If it was grasped securely, it was rated a 3. If the object slipped after a slight disturbance, it was a 2. Each object was grasped 6 times for this test, and we again recorded the user’s guess and the true grasp quality.

Fig. 10. When grasping a soft object, the force sensor reading is noticeably smaller than when grasping a rigid object.

soft like the teddy bear, the sensors sink into the object and experience less of an impact. After grasping, random movements of the object/finger are absorbed by the object and we see a smooth signal. These results show a potential to distinguish between soft and rigid objects during teleoperation.

B. User Study I: Grasp Quality

We devised an experiment using only the data glove and the robotic hand to test the system’s ability to convey grasp quality with the soft force sensors and haptic muscles. A user wore the haptic glove and looked at a computer screen, which showed live footage of a table surface. One of the authors held the wrist of the robotic hand, and the user could see the hand and some objects on the screen. The author placed the robotic hand over an object so the object was partially or fully occluded, and the user closed their fingers to grasp the object. Using their view from the screen and the haptic feedback through the glove, the user reported whether the robotic hand was grasping the object securely or insecurely. After their guess, the author lifted the robotic hand and object to find the true grasp quality; if the object stayed grasped, it was secure, and if the object fell immediately or after a slight disturbance, it was insecure. After 1 to 3 minutes of practice, we recorded the true grasp quality and whether the user’s guess was correct or incorrect. We repeated this test for four objects both with and without haptic feedback, performing a total of 12 grasps per object (6 with and 6 without feedback). We then turned off the camera to test a user’s ability to determine grasp quality using only the haptic feedback they felt through the glove. Rather than identifying between a successful and unsuccessful grasp, we wanted to test levels of grasp security and asked users to rate the grasp from 1 to 3, 1 being least secure and 3 being most secure. After lifting the robotic hand, if the object fell immediately, the grasp would be rated a 1. If it was grasped securely, it was rated a 3. If the object slipped after a slight disturbance, it was a 2. Each object was grasped 6 times for this test, and we again recorded the user’s guess and the true grasp quality. During both tests, we tried to give users an equal number of secure and insecure grasps to identify.

C. Results of User Study I

The results of the two experiments are presented in the Tables II and III. For the first test using the camera, we
found that without feedback, users were able to identify good grasps 73% of the time and poor grasps 51% of the time. With feedback, they correctly identified good grasps with 95% accuracy and poor grasps with 74% accuracy. Users also reported that they felt more confident of their answers with the haptic feedback.

For the blind test, users were 60% accurate at identifying poor grasps and 86% accurate at identifying good grasps. They were also fairly accurate at reporting a middle-level quality of grasp; when users said the grasp was a two, the grasp turned out to be either a one or a two 81% of the time. For both a one or a two grasp, the object slipped at some point during the grasp, either upon initial lifting or after the object was lifted and experienced a small disturbance. Users were more likely to label a middle-level grasp as a 1 than a 3, which is ideal for teleoperation purposes.

During these tests, some users reported feeling an object slipping from their grasp, which highlights the capabilities of the soft force sensors to detect slip as well as the haptic muscles to convey nuanced forces.

D. User Study II: System Teleoperation

To test the intuitive nature of the teleoperation system and effect of feedback on the entire system, we performed user testing with a series of pick-and-place tasks. Users were told to pick up a given object and place it in a nearby box as quickly as possible. After giving each user five minutes of practice time to become accustomed to the system, we tested them with five objects, each with and without haptic feedback, for a total of ten tasks. The five objects were a soft teddy bear, a robot-shaped stress toy, a paper cup, a cardboard box, and an empty plastic water bottle. These ten tasks were randomized to account for user learning during the test, and the position and orientation of each object were kept constant for all trials. We recorded the time required to complete each task, starting from when we told the user to begin and ending when the object landed in the box. A sample of the pick-and-place task, with multiple items on the table, is included in the supplementary video.

1) Results of User Study: During the user study, all subjects completed every task. In the presented data, we define an inexperienced user as someone who was introduced to the system for the first time during user testing. An experienced user had worked with the system during development or for previous publications, and had about 30 minutes to 2 hours of practice before user testing. Analysis of the experienced and inexperienced users’ data showed that subjects’ teleoperation skills improve with practice.

When analyzing the time taken for tasks with and without haptic feedback, we found significant differences between the inexperienced and experienced users. The average task completion times were greatly reduced for some objects, as were the standard deviations. We also observe that in the experienced users, 2 objects benefited from the haptic feedback and the other objects had similar average times. The average time to complete a pick-and-place task for inexperienced users was 55.1 seconds, and for experienced users was 34.6 seconds.

The inexperienced users struggled more with controlling the robotic arm, so the benefits of the haptic feedback are less visible. Teleoperating the robotic arm proved slightly difficult during user testing. Though we tested the teleoperation scheme in simulation, the real robotic arm seemed to have additional safety measures to prevent self-collisions and over-torqueing the motors. Because of these rather unpredictable measures, the arm was sometimes unable to follow a user’s pose, and thus stop moving. Additionally, the hand was somewhat difficult to align because its thumb is not opposable. These issues added to the time and effort required to perform a pick-and-place task, and many users relied mostly on visual feedback to align...
the arm and hand. Though the first set of experiments prove the intuitiveness and usefulness of the pneumatic feedback, the teleoperation system requires some improvements before users can fully make use of the haptics. However, the average task completion time of 55.1 seconds for inexperienced users, and clear improvement of experienced users with more practice time, shows the promise of this teleoperation system. Additionally, experienced users were able to complete more challenging tasks, like placing a small box in a cup, as shown in the supplementary video.

V. DISCUSSION AND FUTURE WORK

In this paper, we discuss the development and testing of a novel data glove with pneumatic feedback for intuitive teleoperation. The glove uses a combination of IMUs and optical curvature sensors to determine the user’s hand and arm pose, and maps this to the position of a robotic arm and hand. The hand is equipped with soft hall-effect force sensors that provide force feedback to the user through pneumatic haptic muscles on the glove.

Through user testing, we found that the system is intuitive and usable with very little training. With only 1 to 3 minutes of training, users were able to use the haptic feedback to accurately judge grasp quality. Additionally, both experienced and inexperienced users were able to complete a total of 10 pick-and-place tasks with objects of various shapes and sizes, taking an average of 50 seconds per task across all users.

The two main challenges in performing pick-and-place tasks were the robotic hand configuration and the behavior of the robotic arm. We are currently working on adding opposability and other capabilities to the robotic hand. We are also delving into the teleoperation issues by using the haptic glove to perform tasks in simulation. By studying and improving upon each subsystem individually, we will improve the efficacy of the whole teleoperation system.

The success rate of all users in completing pick-and-place tasks, as well as the accuracy of grasp quality detection, proves the effectiveness of our system. The next step in this project is to increase the capability of the robotic hand and arm, and explore different modes of feedback to add to the haptic glove. There is also potential to convey object size and stiffness, which would significantly improve a user’s capacity to perform increasingly complex tasks.

ACKNOWLEDGEMENT

The authors would like to thank Erik Howard Skorina for helping with the manuscript.

REFERENCES