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Intuitive Control of a Robotic Arm and Hand
System with Pneumatic Haptic Feedback

Sihui Li, Raagini Rameshwar, Ann Marie Votta, and Cagdas D. Onal, Member, IEEE

Abstract—Robot teleoperation is a transformative field that
can enable workers to safely perform tasks in dangerous environ-
ments. In this paper, we present our work towards a teleoperation
system with safe, realistic force feedback for intuitive control
of a robotic arm and anthropomorphic robotic hand as its
end effector. The system interfaces with the user via a novel
data glove, which detects the state of the hand using inertial
measurement units (IMUs) and custom curvature sensors, and
employs pneumatic muscles to provide force feedback. We use
this glove to control a Kinova Jaco robotic arm and a custom
3D printed hand with embedded force sensors. We tested the
functionality of this system in a grasp quality experiment and
a full teleoperation test. With haptic feedback, users were
accurately able to differentiate between secure and insecure
grasps. In user testing with the full system, all users were able
to complete a series of ten pick-and-place tasks. Inexperienced
users with only 5 minutes of training completed all tasks in an
average of 55.1 seconds, while experienced users with 0.5 to 2
hours of practice took an average of 34.6 seconds.

Index Terms—Soft Robot Applications; Telerobotics and Tele-
operation; Haptics and Haptic Interfaces

I. INTRODUCTION

ROBOTIC systems are becoming indispensable on factory
floors [1], in hospitals [2], and for space and ocean

exploration [3]. As robots become stronger and more durable,
they are replacing humans for remote or dangerous tasks.
State-of-the-art autonomy is often not sufficient to handle tasks
in unpredictable environments. As such, these tasks benefit
from teleoperation systems in which a human remotely and
safely controls the robot [4]. The success of these teleoperation
systems depends on both the control method and the existence
of feedback [5][6].

In this paper, we propose a novel teleoperation system using
soft robotic principles, building on our previous work [7].
A data glove system captures user movements using inertial
measurement units (IMUs) and custom curvature sensors that
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detect finger bending using the signal between an infrared
LED and receiver. The user movements control a 6 degree
of freedom (DoF) robotic arm (Kinova Jaco) and five-fingered
anthropomorphic hand. The robotic hand is equipped with soft
force sensors that detect grasp forces, which are transmitted to
the user through soft pneumatic actuators. The result is a safe
and intuitive system that can be used with very little training
(Figure 1).

Fig. 1. In the proposed teleoperation system, a user wears the haptic glove and
controls commercial 6-DoF robotic arm and a robotic hand as its end-effector.

A. Existing Work

1) Control Methods: There are two main categories of
control methods for teleoperation. One category uses small
hand-held controllers such as joysticks, keyboards, computer
mice, and touch screens [4]. Due to limited DoF, hand-held
controllers pose a challenge when controlling robots with
many degrees of freedom, such as robotic arms. In [8], joystick
control of a robotic arm requires unintuitive mode changes
between position, orientation, and gripping control.

The other category of controllers captures natural body
movements to control a robot, resulting in a more intuitive
system. Motion capture systems use cameras, body markers,
and computer vision to detect user position [9]. While the
measurements are accurate and the control seems intuitive, it
results in a large, stationary, and expensive system. In contrast,
data gloves are wearable devices that use sensors such as
accelerometers and gyroscopes to track a user’s movement
[10]. Data gloves are becoming increasingly popular for tele-
operation due to their lightweight and portable form factors.

In [11], the authors present a novel data glove using 18
IMUs to track a users arm and finger movements. The glove
is relatively inexpensive and lightweight, but has several
drawbacks. Firstly, the authors require that a users body stays
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stationary, which can result in an awkward user experience.
Secondly, high-quality IMUs are expensive, and inexpensive
IMUs are highly prone to drift. In contrast, our teleoperation
system detects a user’s palm position and orientation relative
to their shoulder, allowing them to move during teleoperation.
In addition, using curvature sensors to measure finger positions
reduces the number of IMUs to three.

2) Feedback Methods: Haptic feedback is an important
aspect of an effective teleoperation system [5]. There are
several modes of haptic feedback, which vary in effectiveness
depending on the application. Tactile feedback is transmitted
using vibration, temperature, or pressure close to the skin and
usually indicates initial contact with an object. Force feedback
is transmitted by applying a force to a user’s body and can
indicate a resistive force, such as grasping an object [12]. In
some cases, this force can stop a user’s movement, for example
by preventing their fingers from closing [13]. In others, the
user’s movements are not hindered by the force [14]. Force
feedback is an effective way to transmit quality-of-grasp to a
user, and enhances grasp stability and allows for more delicate
manipulation [6].

In [15], the authors present the RML glove to control a
mobile robot. As the robot approaches an object, the user’s
finger movements, which control the speed of the robot, are
limited to prevent collisions of the robot with other objects.
Another glove, presented in [16], uses three servos to provide
3-DoF feedback to one fingertip. In both these cases, the
force feedback method is bulky and expensive. Additionally,
attaching tendons to a users fingers poses a risk of injury if
the system pulls the user’s fingers past their comfort level. Our
proposed force feedback method is pneumatically driven using
very low pressure, making it a lightweight and safe alternative.

The ExoPhalanx [13] is a haptic glove that uses a shape
memory alloy (SMA) driven brake to stop the user’s fingers
from bending once they pass a given threshold. This device
is soft, wearable, and non-bulky, but locks the users fingers
into a fixed position while transmitting feedback. Another
glove, proposed in [17], uses soft inflatable chambers under the
user’s fingers to provide initial contact feedback. Our proposed
system detects and relays contact for the duration of a grasp,
enabling more accurate object manipulation.

Table I compares our current teleoperation system with
many of the systems described above. We chose parameters
that are important to a teleoperation system, such as weight,
cost, time to learn, and capability. Some of the papers did not
report pick-and-place test times, and others did not perform a
pick-and-place task.

B. Contributions

We present a novel teleoperation system that controls a 6-
DoF robotic arm with an attached anthropomorphic robotic
hand using an intuitive control scheme and safe force feed-
back. The system is lightweight (213g), inexpensive (less than
$150), and user friendly. Using principles of soft robotics, it
accurately reads external grasping forces and safely transfers
them to a user. Our specific contributions are as follows:

1) Pneumatic haptic muscles that are lightweight, safe, and
provide realistic kinesthetic feedback to a user.

Fig. 2. The teleoperation system consists of three main subsystems connected
through ROS (Robot Operating System). The haptic glove captures user
movements and ROS passes this data to the Jaco arm and robotic hand. The
robotic hand captures grasp forces which are passed back to the haptic glove.

2) Soft magnetic force sensors embedded in a compliant
robotic hand used for teleoperation.

3) Custom optical curvature sensors that detect finger cur-
vature in a lightweight, cost-effective form factor.

4) An intuitive teleoperation system based on IMUs where
the user may move freely during operation.

In the remainder of this paper, we will present the system
overview (II), design and validation of each subsystem (III),
and user testing (IV).

II. SYSTEM OVERVIEW

The proposed teleoperation system consists of three major
subsystems: a custom-built haptic glove worn by the user, a
commercially available robotic arm, and a 5-fingered robotic
hand mounted to the arm’s end effector. The three subsystems
are connected through ROS (Figure 2), which passes informa-
tion across the whole system.

The haptic glove reads the user’s hand position and orien-
tation relative to their shoulder, as well as the curvature of
their fingers. The pose is converted to joint angles for the
robotic arm, and the finger curvatures map to joint angles on
the robotic hand. As the user moves their arm and fingers, the
robotic arm and hand mirror the user’s movements.

The robotic hand contains soft force sensors at the fingertips
that detect grasp forces during teleoperation. These forces are
converted to signals that activate pneumatic actuators mounted
to the glove. As the actuators inflate, the user experiences a
grasp sensation that mirrors the robotic hand’s forces.

The system as a whole offers the user a telepresence
experience, in which the movements and sensations of the
robot system are directly associated with their own.

III. SUBSYSTEM DESIGN

A. Haptic Glove

The haptic glove is a soft wearable glove system with
sensors and actuators for data collection and force feedback.
It consists of curvature sensors, IMUs (Adafruit BNO055),
and pneumatic haptic muscles. The IMUs mount to the user’s
palm, forearm, and upper arm with adjustable bands and report
the relative angles of the user’s arm and wrist (Figure 3).
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TABLE I
COMPARISON OF TELEOPERATION SYSTEMS

Name Teleoperation
Method

Feedback
Method

Weight of
Glove Cost Training Time

Given
Avg Time to Complete
Pick-And-Place

Joystick Modal
Change [18] Joystick Visual Only N/A Not Reported 5 minutes ∼450s

IMMU Data
Glove [11] IMUs Visual Only >110g $200 Not Reported Not Reported

RML Glove [15] Exoskeleton
with Encoders

DC Motor and
Cable System 180g Not Reported 5 minutes N/A (Not Pick-And-Place)

ExoPhalanx [13] Cyberglove,
Motion Capture SMA Brake >540g >$13,000 Not Reported N/A (No Pick-And-Place

Performed)

CICG [19] Commercial Data
Glove, IMUs

Vibration
Motors 300g ∼$3,500 N/A Not Reported

Electro-Tactile
Teloperation [20]

P5 Virtual Reality
Glove

Electro-tactile
Feedback 28g >$250 5 minutes Not Reported

Pneumatic Haptic Glove
(this work)

Custom Data
Glove, IMUs

Pneumatic
Haptics 213g <$150 5 minutes/30-120 minutes 55.1s/34.5s

Fig. 3. The haptic glove system consists of curvature sensors and haptic
muscles mounted to the glove and three IMUs secured with adjustable bands.
The IMUs are placed on the user’s palm, forearm, and upper arm.

Fig. 4. When the user’s finger is straight, light from the LED reaches the
receiver, resulting in a high signal. As the user gradually curves their fingers,
the light is blocked, resulting in a low signal. This provides an accurate reading
of the user’s finger curvature.

1) Curvature Sensors: To detect the curvature of the user’s
fingers, we use optical curvature sensors mounted to the
fingers of the haptic glove. Each sensor contains an infrared
LED and receiver connected by a black tube to block external
light. When the user’s finger is straightened, the LED and
receiver are directly facing each other and the signal from the
receiver is high. When the user’s finger is curled, the signal
is low, as shown in Figure 4. Because there is no resistive
component to this sensor, the readings do not suffer from
drift and other inconsistencies. We map the signal from each
finger to a corresponding finger position on the robotic hand,
thus mirroring the user’s movements.

2) Haptic Muscles: The goal of our feedback system is to
be as realistic as possible when conveying grasp forces. When
a person grasps a cup, their fingers are unable to close past
the cup’s surface. This force that prevents their fingers from
curling further is what the haptic muscles replicate.

The haptic muscles are pneumatic actuators manufactured
from heat sealable plastic. The plastic is cut and sealed into
a pouch, then rolled into a toroid shape to fit around the
user’s fingers. When deflated, the haptic muscles do not hinder
the user’s movements, as the plastic is fairly soft. As they
inflate around the user’s fingers, they exert a gentle force
that straightens the knuckle and feels similar to the force
exerted by a real grasped object (Figure 5). By regulating
the pressure with solenoid valves and pulse-width modulation
(PWM) control, we apply varying levels of pressure (from 0
to 5psi) to indicate a weaker or stronger grasp.

To measure the force exerted on a user’s fingers, we
mounted a haptic muscle to a 2-link 3D-printed finger with
a freely rotating joint, and tied the fingertip to a load cell as
shown in Figure 5(b). As we pressurized the haptic muscle by
increasing the PWM input, the finger attempted to straighten
and pulled on the string, applying a measurable force on the
load cell. Figure 5(c) shows the force versus PWM values
for one cycle of increasing and decreasing pressure. Because
increasing the pressure involves pushing air into the actuator,
and decreasing pressure lets the air leak into the atmosphere,
the haptic muscle deflates slower than it inflates, causing
the observed hysteresis. Given the results from User Study
1 (Grasp Quality Test) presented in Section IV, it is clear that
this discrepancy is not noticeable during operation. Both the
increasing and decreasing pressures were accurate enough to
communicate grasp quality to the users.

B. 5-fingered Robotic Hand

1) Hand design: The 5-fingered anthropomorphic robotic
hand (Figure 6) is a modified version of the Open Bionics
V1.1 Ada Hand, an open-source 3D-printable hand used as a
research platform for prosthetic hands. The back of the hand
is printed in PLA, while the palm and fingers are printed
in Ninjaflex, a flexible filament produced by Ninjatek. The
softer palm gives the hand some compliance while grasping,
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Fig. 5. (a) The deflated haptic muscles (left) are soft and do not hinder
movement. When inflated (right), they tighten and apply a gentle restoring
force. (b) To measure the change in force from the muscle given a change
in PWM signal, we tied the end of a 2-link 3D-printed finger to a load cell
and incremented the PWM signal over time. When the muscle is deflated, the
finger remains bent. When it inflates, the finger tries to straighten and pulls
upward on the string and load cell. (c) As the PWM signal is increased (blue)
and decreased (orange), the force correspondingly increases and decreases.

Fig. 6. Our 5-fingered anthropomorphic hand is printed out of PLA (black)
and flexible Ninjaflex (gold). Embedded in each finger is a soft force sensor
consisting of a Hall-Effect sensor and a magnet. As the fingers encounter
grasping forces, the magnet shifts relative to the Hall-Effect sensor. Reading
these shifts provides force measurements in three axes.

and the flexible hinges in the fingers allow for an underactu-
ated tendon-driven system with realistic motions. Because the
fingers are partially compliant, they conform to many object
shapes without needing to account for various grasp types.
Therefore, it is possible to grasp many different objects using
only a few grasp motions. This decreases the complexity for
the user, and the complexity of the system as a whole.

The hand uses four linear actuators (Actuonix PQ12-R) to
flex its fingers: one each for the first, second, and third fingers,
and one for both the fourth and fifth fingers. The fingers extend
passively when tension is removed from the tendons.

2) Soft Force Sensors: We modified the original Ada hand
for our teleoperation requirements by adding soft force sensors

Fig. 7. Pushing the front of the fingertip in the normal direction against a
load cell results in a linearly related change in force between the load cell and
normal force. The result is similar when the side of the fingertip is pushed
against the load cell in the shear direction.

at the fingertips. These sensors, shown in Figure 6, are located
in a small chamber embedded in the fingertip. At the bottom
of the chamber is a custom PCB (developed in [21]) with a
3-axis hall-effect sensor, and at the top is a small magnet. As
the finger tip deforms, the magnet moves in the x, y, or z
direction, causing a change in the magnetic field read by the
hall-effect sensor. As this deformation is caused by an external
force on the fingertip, we can use this sensor to measure the
relative force on each fingertip from grasping objects.

The sensor chamber has 2 walls on the left and right sides,
and on the front and back a small ninjaflex band connecting
the walls to prevent buckling (Figure 6). This geometry results
in high stiffness in the normal direction and low stiffness in
the shear direction. This allows the fingers to be strong enough
to grasp heavy objects but flexible enough to read changes in
shear force. In Figure 7, we pressed the tip of the finger against
a load cell, first in the normal direction (front of the fingertip)
and then in the shear direction (side of the fingertip). Because
the shear force readings were more sensitive, we chose to use
the shear force to drive the haptic feedback.

C. Teleoperation Scheme

To demonstrate the usability of our robotic hand and haptic
glove, we designed a teleoperation scheme using the Kinova
Jaco arm. The goal is to build an intuitive mapping between
the Jaco arm (6 DoF) and the human arm (7 DoF). Existing
work on teleoperating the Jaco arm falls into three main
categories: teleoperation with a handheld device [8], teleoper-
ation with motion sensors [22], and teleoperation with visual
interface [23]. In our previous work, we experimented with
joint-to-joint mapping of Jaco arm, which requires users to
limit their own motion because the Jaco has fewer DoF. In
this work we explore end-effector (ee) mapping with the arm
mounted upright to a table.

From a pilot study run in simulation testing various config-
urations and teleoperation schemes (Figure 8), we found that
mounting the Jaco upright on the table was the easiest to use.
We also found that ee mapping is fairly intuitive, since the
user focuses more on the ee than the pose of the robot. We
thus apply an end-effector mapping scheme to the physical
robot using a table-top mounting position.

Since we have a different robotic hand from the Jaco arm’s
original gripper, Jaco’s default inverse kinematic (IK) solver
is no longer applicable. To solve the current IK, we use
the trac ik package [24] with a modified robot definition
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Fig. 8. We tested four teleoperation schemes using three mounting points in
simulation (Gazebo). Users played a game in which they attempted to reach
a given end-effector pose and orientation (green) as quickly as possible.

Fig. 9. To calculate the latency of teleoperation, we teleoperate the robot in
one axis and find the time difference between the robot and user’s highest
and lowest points. The calculated latency is 1.07s.

file to fit our needs. In a simple pilot study, testing with
IMUs mounted to a user’s arm, we found that separating
the position and orientation for solving IK resulted in fewer
invalid solutions. The first three joints of the Jaco arm are
used to analytically calculate position and the last three joints
are used to iteratively calculate orientation. After we have the
joint angle solutions, the lower level control of joints is based
on joint velocities for smoother results.

To validate the teleoperation scheme and quantify possible
delays, we collected data while teleoperating the arm along
the z-axis and comparing the human and robot’s trajectory
(Figure 9). The robot’s trajectory reaches further than the
human’s trajectory because of the extended length of the
robot’s wrist and hand. The observed latency of 1.07 seconds
is primarily caused by limited joint velocities, which were set
for safety reasons. We set the first three joints velocity limits
to 10 degrees/s and the last three joints velocity limits to 50
degrees/s.

IV. EXPERIMENTS

A. Teleoperation with Grasp Detection Validation

To validate the functionality of the force feedback, we
experimented with grasping both soft and rigid objects while
plotting the force sensor readings from the hand. Figure
10 shows that as the robot’s fingers contact the object, the
magnitude of the force sensor readings increases. The test is
included in the third section of the supplementary video. When
grasping a rigid box, the force sensor readings are noticeably
larger than when grasping a soft teddy bear. Additionally,
the signal is more disturbed and we observe a peak at the
start of grasping. This is due to the compliance of the soft
force sensors. When grasping a rigid object like the box, the
sensors impact the object quickly, causing the first signal peak.
Then, any small movements within the sensors or of the object
result in observable signal changes. When grasping something

Fig. 10. When grasping a soft object, the force sensor reading is noticeably
smaller than when grasping a rigid object.

soft like the teddy bear, the sensors sink into the object
and experience less of an impact. After grasping, random
movements of the object/finger are absorbed by the object
and we see a smooth signal. These results show a potential to
distinguish between soft and rigid objects during teleoperation.

B. User Study I: Grasp Quality

We devised an experiment using only the data glove and the
robotic hand to test the system’s ability to convey grasp quality
with the soft force sensors and haptic muscles. A user wore the
haptic glove and looked at a computer screen, which showed
live footage of a table surface. One of the authors held the
wrist of the robotic hand, and the user could see the hand and
some objects on the screen. The author placed the robotic hand
over an object so the object was partially or fully occluded,
and the user closed their fingers to grasp the object. Using
their view from the screen and the haptic feedback through the
glove, the user reported whether the robotic hand was grasping
the object securely or insecurely. After their guess, the author
lifted the robotic hand and object to find the true grasp quality;
if the object stayed grasped, it was secure, and if the object fell
immediately or after a slight disturbance, it was insecure. After
1 to 3 minutes of practice, we recorded the true grasp quality
and whether the user’s guess was correct or incorrect. We
repeated this test for four objects both with and without haptic
feedback, performing a total of 12 grasps per object (6 with
and 6 without feedback). We then turned off the camera to test
a user’s ability to determine grasp quality using only the haptic
feedback they felt through the glove. Rather than identifying
between a successful and unsuccessful grasp, we wanted to
test levels of grasp security and asked users to rate the grasp
from 1 to 3, 1 being least secure and 3 being most secure.
After lifting the robotic hand, if the object fell immediately,
the grasp would be rated a 1. If it was grasped securely, it
was rated a 3. If the object slipped after a slight disturbance,
it was a 2. Each object was grasped 6 times for this test, and
we again recorded the user’s guess and the true grasp quality.
During both tests, we tried to give users an equal number of
secure and insecure grasps to identify.

C. Results of User Study I

The results of the two experiments are presented in the
Tables II and III. For the first test using the camera, we
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TABLE II
GRASP QUALITY TEST WITH VISUAL FEEDBACK

No Haptic Feedback Haptic Feedback
Secure Grasp, Correct 66 97
Secure Grasp, Incorrect 25 5
Insecure Grasp, Correct 54 71
Insecure Grasp, Incorrect 52 25

TABLE III
GRASP QUALITY TEST WITH NO VISUAL FEEDBACK

Reported Grasp Quality
1 2 3

Actual Grasp Quality
1 49 23 10
2 2 11 14
3 2 8 61

found that without feedback, users were able to identify good
grasps 73% of the time and poor grasps 51% of the time.
With feedback, they correctly identified good grasps with
95% accuracy and poor grasps with 74% accuracy. Users also
reported that they felt more confident of their answers with
the haptic feedback.

For the blind test, users were 60% accurate at identifying
poor grasps and 86% accurate at identifying good grasps. They
were also fairly accurate at reporting a middle-level quality of
grasp; when users said the grasp was a two, the grasp turned
out to be either a one or a two 81% of the time. For both a
one or a two grasp, the object slipped at some point during the
grasp, either upon initial lifting or after the object was lifted
and experienced a small disturbance. Users were more likely
to label a middle-level grasp as a 1 than a 3, which is ideal
for teleoperation purposes.

During these tests, some users reported feeling an object
slipping from their grasp, which highlights the capabilities
of the soft force sensors to detect slip as well as the haptic
muscles to convey nuanced forces.

D. User Study II: System Teleoperation

To test the intuitive nature of the teleoperation system and
effect of feedback on the entire system, we performed user
testing with a series of pick-and-place tasks. Users were told
to pick up a given object and place it in a nearby box as
quickly as possible. After giving each user five minutes of
practice time to become accustomed to the system, we tested
them with five objects, each with and without haptic feedback,
for a total of ten tasks. The five objects were a soft teddy bear,
a robot-shaped stress toy, a paper cup, a cardboard box, and an
empty plastic water bottle. These ten tasks were randomized to
account for user learning during the test, and the position and
orientation of each object were kept constant for all trials. We
recorded the time required to complete each task, starting from
when we told the user to begin and ending when the object
landed in the box. A sample of the pick-and-place task, with
multiple items on the table, is included in the supplementary
video.

1) Results of User Study: During the user study, all subjects
completed every task. In the presented data, we define an
inexperienced user as someone who was introduced to the

Fig. 11. To test our system, users picked up 5 randomly ordered objects, each
with and without feedback, and placed them in a box. Objects are placed on
the table one at a time.

Fig. 12. User study results with/without feedback for experienced user and
inexperienced user. The center point is the average time to complete the pick-
and-place task for an object, and the error bars represent the standard deviation
among users.

system for the first time during user testing. An experienced
user had worked with the system during development or for
previous publications, and had about 30 minutes to 2 hours of
practice before user testing. Analysis of the experienced and
inexperienced users’ data showed that subjects’ teleoperation
skills improve with practice.

When analyzing the time taken for tasks with and without
haptic feedback, we found significant differences between
the inexperienced and experienced users. The average task
completion times were greatly reduced for some objects, as
were the standard deviations. We also observe that in the
experienced users, 2 objects benefited from the haptic feedback
and the other objects had similar average times. The average
time to complete a pick-and-place task for inexperienced users
was 55.1 seconds, and for experienced users was 34.6 seconds.

The inexperienced users struggled more with controlling the
robotic arm, so the benefits of the haptic feedback are less
visible. Teleoperating the robotic arm proved slightly difficult
during user testing. Though we tested the teleoperation scheme
in simulation, the real robotic arm seemed to have additional
safety measures to prevent self-collisions and over-torqueing
the motors. Because of these rather unpredictable measures,
the arm was sometimes unable to follow a user’s pose, and thus
stop moving. Additionally, the hand was somewhat difficult to
align because its thumb is not opposable. These issues added
to the time and effort required to perform a pick-and-place
task, and many users relied mostly on visual feedback to align
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the arm and hand. Though the first set of experiments prove
the intuitiveness and usefulness of the pneumatic feedback,
the teloperation system requires some improvements before
users can fully make use of the haptics. However, the aver-
age task completion time of 55.1 seconds for inexperienced
users, and clear improvement of experienced users with more
practice time, shows the promise of this teleoperation system.
Additionally, experienced users were able to complete more
challenging tasks, like placing a small box in a cup, as shown
in the supplementary video.

V. DISCUSSION AND FUTURE WORK

In this paper, we discuss the development and testing of
a novel data glove with pneumatic feedback for intuitive
teleoperation. The glove uses a combination of IMUs and
optical curvature sensors to determine the user’s hand and arm
pose, and maps this to the position of a robotic arm and hand.
The hand is equipped with soft hall-effect force sensors that
provide force feedback to the user through pneumatic haptic
muscles on the glove.

Through user testing, we found that the system is intuitive
and usable with very little training. With only 1 to 3 minutes
of training, users were able to use the haptic feedback to
accurately judge grasp quality. Additionally, both experienced
and inexperienced users were able to complete a a total of 10
pick-and-place tasks with objects of various shapes and sizes,
taking an average of 50 seconds per task across all users.

The two main challenges in performing pick-and-place tasks
were the robotic hand configuration and the behavior of the
robotic arm. We are currently working on adding opposability
and other capabilities to the robotic hand. We are also delving
into the teleoperation issues by using the haptic glove to
perform tasks in simulation. By studying and improving upon
each subsystem individually, we will improve the efficacy of
the whole teleoperation system.

The success rate of all users in completing pick-and-place
tasks, as well as the accuracy of grasp quality detection, proves
the effectiveness of our system. The next step in this project
is to increase the capability of the robotic hand and arm, and
explore different modes of feedback to add to the haptic glove.
There is also potential to convey object size and stiffness,
which would significantly improve a user’s capacity to perform
increasingly complex tasks.
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