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ABSTRACT
Limb deficiency severely affects the daily lives of amputees and
drives efforts to provide functional robotic prosthetic hands to com-
pensate this deprivation. Convolutional neural network-based com-
puter vision control of the prosthetic hand has received increased
attention as a method to replace or complement physiological sig-
nals due to its reliability by training visual information to predict
the hand gesture. Mounting a camera into the palm of a prosthetic
hand is proved to be a promising approach to collect visual data.
However, the grasp type labelled from the eye and hand perspec-
tive may differ as object shapes are not always symmetric. Thus, to
represent this difference in a realistic way, we employed a dataset
containing synchronous images from eye- and hand- view, where
the hand-perspective images are used for training while the eye-
view images are only for manual labelling. Electromyogram (EMG)
activity and movement kinematics data from the upper arm are
also collected for multi-modal information fusion in future work.
Moreover, in order to include human-in-the-loop control and com-
bine the computer vision with physiological signal inputs, instead
of making absolute positive or negative predictions, we build a
novel probabilistic classifier according to the Plackett-Luce model.
To predict the probability distribution over grasps, we exploit the
statistical model over label rankings to solve the permutation do-
main problems via a maximum likelihood estimation, utilizing the
manually ranked lists of grasps as a new form of label. We indi-
cate that the proposed model is applicable to the most popular and
productive convolutional neural network frameworks.
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1 INTRODUCTION
To enhance the life quality of an individual who has experienced
an upper limb loss, many research groups focus on the develop-
ment of robotic prosthetic hands to provide a dexterous experience
[11, 12]. The newest myoelectrical activity-based designs of the
prosthetic hand demonstrate promising results for patients with
hand and wrist amputation, but the quality of the muscle activity
signals decreases dramatically as amputation severity increases.
Recent evidence indicates that deficient electromyogram (EMG)
activity could be compensated by electroencephalogram (EEG) sig-
nals [1, 14, 19, 22], but because of the lower signal-to-noise ratio of
EEG data, the results are still not sufficient for real-world problems.
Additionally, frequent calibration of the system is required to ac-
count for sensor sensitivity to external factors, such as electrode
locations and skin variabilities. Since each patient has a different
level of amputation, transferring the learning between subjects is
also challenging. The usage of computer vision to drive a robotic
controller avoids the aforementioned issues associated with the
physiological signals.
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With the development of convolutional neural network (CNN)
architectures [8, 16, 18, 25, 26, 28, 29], recent studies on computer
vision-based prosthetic hand implementation [7, 10–12, 27] mainly
focus on grasp detection problems of training CNNs to recognize
objects into a grasp type. These studies mostly use an eye-level
camera worn by the user (usually located on the user’s head), which
reduces the convenience and aesthetics while increasing the cost
due to the extra visual device. Furthermore, the movement of the
human hand and head may not be synchronous, which could cause
the inaccurate capture of objects; also the real-time communication
between the prosthetic hand and the remote head-camera is another
challenge.

In [7] a camera is embedded in the palm of a prosthetic hand as
an alternative, where a CNN was trained on eye-level images with
labels derived manually from eye-perspective. However, the identi-
fied grasp types for the same object from eye and hand perspectives
are usually different for novel objects with irregular shapes. La-
bellers could directly decide the grasp type to hold an object by
observing the hand location and approach direction, but a robotic
hand with a palm camera could only view objects from the hand-
perspective. Therefore, a prosthetic hand design which includes
a camera mounted in the palm should be provided a method to
train a deep neural network using data from hand-perspective as
a surrogate for this missing human-like intuition. We collected a
customized dataset and trained CNN models using images from the
hand-view, and also asked labellers to order the grasp types according
to their relevance for each object from different approaching orien-
tations of hand perspectives, instead of annotating a specific object
with a fixed gesture, i.e. grasp type. To the best of our knowledge,
the existing studies use only eye-view data for both collecting labels
and training the CNN, and none of them record data from different
object orientations or provide the corresponding EMG and other
motion data. All of these aspects are covered in this dataset.

Visual information is easy to obtain and relatively stable to users
and environmental variations, and thus leads to more intuitive deci-
sions as well as robust results. However, building a prosthetic hand
with only computer vision techniques and excluding the human
effect may not be the best option. Physiological signals are still
required to detect the human response and intention. For instance,
moving towards a closer object may indicate the intention to push
it away in order to grasp a further one. Therefore, a more reliable
solution to a prosthetic hand design should leverage the strengths
of both visual information and biomedical signals.

To facilitate multi-modal fusion of computer vision with phys-
iological signal inputs, a probability-based classifier is preferred
over an absolute prediction. A general idea to estimate multi-class
distributions is to transform ranking scores of labels into accurate
probability estimates while minimizing the overall classification
error [2, 5, 6, 15, 17, 21, 31, 32]. In [2, 5, 15, 31, 32], these scores
are generated from the distances to the decision hyper-planes of
different classes learned by support vector machines or k-nearest
neighbors algorithm. Other score metrics are also applied to this
problem in [6, 17, 21], such as Kendall distance, surrogate loss, Ham-
ming loss, etc. However, mostly these methods are only for binary
classification, or more prevalently, they divide multi-label learn-
ing into multiple independent binary classification problems. Thus,
most of these approaches suffer from imbalanced data distributions

while building binary classifiers to distinguish the correct class.
With the increase in the number of classes, this problem gets even
worse, and simultaneously the computation also shows a squared
growth. Therefore, in this paper, we apply an alternative approach
which undermines these disadvantages, based on the Plackett-Luce
(PL) Model [3, 4, 13, 20, 23]. The general idea is to estimate the
probability models on rankings to optimize permutation domain
problems. This problem could be solved through a maximum likeli-
hood estimation, by bridging the distribution estimation to label
ranking. Therefore, to address the label ranking, we manually list
the permutation of grasps as a novel form of label for the collected
image data: instead of giving purely positive or negative labels, the
labellers were asked to order grasp types from the most relevant
to the most irrelevant ones. Compared to the typical classification
problems, our task is not detecting one certain label but deciding
the distribution over grasps and also the best grasp order using
the labels collected from different users who may have alternative
preferences. Thus, considering the difficulty of the problem, the
results are promising. Additionally, the study shows that the pro-
posed model is applicable to the most popular and productive CNN
frameworks.

2 NOVELTY
2.1 Eye-View Images for Labeling and

Hand-View Images for Training
In our dataset, the visual data (both image and video) of various
objects from both hand and eye views were collected simultane-
ously, since the footage of the palm camera while approaching the
object does not match with the eye aspect due to the nature of the
problem. Therefore, to imitate this human-like pattern for a palm
camera, instead of training models with eye-view images, we used
the hand-perspective data of the dataset as training images, and
manually annotated these hand-view pictures by showing eye-level
images to labellers. It is worth to stress that the eye-level images
were only for manual labelling because the labels are only decided
by the human eye-view of observing the hand location with respect
to the object, while a CNN prepared for a robotic hand could be
trained with hand-view images because of the visual pattern of the
hand. Furthermore, the visual data were collected from different
orientations of the objects to learn the complex shape information
of each target, rather than assigning one fixed label to each object.
Electromyogram activity and dynamic data from the upper arm
were also recorded for further studies.

2.2 Ranking Label
As introduced in the following sections, the distribution estimate
of all possible grasp types could be implemented by introducing
probability models on rankings to optimize permutation domain
problems. To do so, during the data collection, instead of picking
the most relevant hand gesture, the labellers were asked to provide
the preferred order of multiple grasp types; the ranked permutation
of grasps is called ranking label. By exploiting this special form of
high-dimensional label, the prediction of a CNNwill be a probability
distribution over gestures, of which the top one is the most likely
gesture of a successful grab. However, existing multi-class datasets

257



From Hand-Persp. Visual Info. to Grasp Type Prob.: Deep Learning via Ranking Labels PETRA ’19, June 5–7, 2019, Rhodes, Greece

Web Camera

MYO Band
ObjectGoPro

305 mm

305 mm

Object Rotated

(a)

(b)

(c)

Figure 1: The set-up of the data collection: (a) an experi-
menter wore a headband which held a web camera for the
human eye-view aspect, whereas, a GoPro camera was at-
tached on experimenter’s hand to collect visual information
from the hand aspect. The EMG signals andmovement kine-
matics were recorded with a MYO armband. (b) The initial
distance between the object and hand was 305 mm, and it
was fixed before and right after the approaching. (c) The ob-
ject was horizontally and vertically rotated to capture all
possible orientations.

usually contain labels which are definitely positive or absent but
still considered as positive.

2.3 Probability Estimation Via Label Ranking
Different from the common classification tasks to decide one classi-
fication out of several classes, in order to facilitate the combination
of computer vision with the EEG and EMG systems in the future,
and also to reflect the diversity of user preferences on different
grasps, we build a novel model for estimating the entire statistical
distribution over multiple classes and then ranked them, by making
use of the ranking label introduced above. The multi-class ranking
and probability distributions could be bridged by the Plackett-Luce
(PL) model, which introduces a probability model on rankings to
optimize permutation domain problems. Then, by introducing a
maximum likelihood estimation problem, the prediction of the prob-
ability distribution of gestures could be solved by label ranking.
By rewriting the estimated probability distribution of the multiple
classes with the order of the most to the least likely, the estimated
ranked list of labels could also be obtained. This model is applicable
to other types of implementations for distribution estimates and
ranking proposes, and it is proved in the experiments that the most
common and productive CNN structures such as GoogLeNet, In-
ceptionV3 and ResNet50 are able to be utilized as the base network.

3 DATA COLLECTION
In this section, we explain the dataset collected by the authors,
which is for the probability estimation and ranking of multiple
grasps, for the prosthetic hand with a camera mounted in the palm.
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Figure 2: Eye-view images were captured by a webcam (Log-
itechWebcamC600, 1600×1200 resolution) for labelling and
corresponding hand-view images were captured by GoPro
(GoPro Hero Session, resolution of 3648×2736 pixels) for
training.

3.1 Set-up and Collection
The visual data (both image and video) of various objects from both
hand and eye viewswere collected simultaneously. As demonstrated
before, considering the natural behavior pattern of human, the eye-
view photos were only provided to labellers for manual annotation
instead of training CNNs; while these labels and corresponding
hand-view images were the ones fed into the CNN for training.
Furthermore, to adapt to the irregularity of the object shape, the
visual data were collected from different orientations for each object.
To enlarge the dataset, augmentation (introduced in Section 3.3)
were applied to the hand-view photos. Additionally, the dataset
includes videos from both eye and hand perspectives, EMG signals
collected from upper arm, and movement kinematics (acceleration,
duration, gyroscope and orientation) collected while approaching
the object.

The set-up for data collection is shown in Fig. 1. During data
collection, an experimenter wore a headband which held a camera
for the human eye-view, while another camera was attached on
experimenter’s right hand to collect visual information from the
hand aspect. First, to collect the static image data, the subject kept
the right hand and head stationary, and both cameras captured
photos simultaneously (see Fig. 2). Then, with an audio cue, the
experimenter started to approach the object while videos, EMG,
and movement kinematic acquisition devices started to collect all
trials. The record was stopped when the experimenter finished
grasping the object and returned to the initial state, which was
305 mm (12 inches) far from the object. The same procedure was
repeated a number of times while the object was rotated vertically
and horizontally to capture all possible orientations. In order to
simplify the vision problem, all images were taken in front of a
black curtain.

The current dataset consists of 4466 images and labels for train-
ing, which were generated from 413 hand-perspective pictures of
102 ordinary objects, including office and daily supplies, utensils,
and complex-shaped objects like stuffed animals. In addition, for
the potential applications in the future, the dataset includes videos
from both eye and hand perspectives, EMG signals and correspond-
ing movement kinematics, where the videos could be utilized to
understand the distance between the hand and object to decide the
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Figure 3: The usage of images from eye and hand perspectives: First, the eye- and hand- perspective photos were taken simul-
taneously. Then, the eye-perspective images were shown to labellers for the manual annotation to obtain the ordered list of 5
gestures. At the same time, the pictures fromhand-viewwere pre-processed, whichwere thenmatchedwith the corresponding
labels, by which a CNN model was trained.

time when the hand needs to start pre-shaping to meet object de-
mands, and EMG and kinematics signals could be used for a hybrid
multi-modal controller.

Even though human grasp types could be grouped into 33 classes
in [9], some of them are too complex for a robotic implement. As
proved in [9], some of the grasp tasks are very similar with the
others and most of them could be handled successfully by several
ones of all the 33 gestures. Moreover, it has been shown in [22] that,
EEG signals are only capable of classifying 5 specific grasp types.
Thus, for the future fusion with the EEG control, the label set is
limited to 5 gestures: Open Palm, Medium Wrap, Power Sphere,
Parallel Extension and Palmar Pinch, as shown in Fig. 4.

3.2 Data Annotation: Ranking Label
To estimate the probabilistic distribution and ranking of the ges-
tures, each image was annotated by a ranking label – an ordered
permutation of 5 grasp types rather than a single grasp type. In
order to cover the human decision variability and combat the bi-
ases of different subjects, 11 individuals participated in the label
collection (which was conducted separately from the data collec-
tion), and they were randomly shown eye-view images through
an interface. Then they were asked to order the 5 grasp types for
each eye-view image, which could be denoted as a bijection of
(д1, · · · ,д5) onto (д′1 ≻ · · · ≻ д′5), where дi and д

′
i are grasp classes.

For example, a possible ranking label could be ′Palmar Pinch ≻

Parallel Extension ≻ Medium Wrap ≻ Power Sphere ≻ Open Palm′.
Each sorted ranking is a 5-dimension label, which was then paired
with its corresponding training (hand-view) image to train CNNs
after pre-processing.

3.3 Data Augmentation and Pre-processing
Similar to any deep neural network model, CNNs require relatively
large datasets for training in order to avoid overfitting. To satisfy
this requirement, each image was matched with multiple labels
obtained from different individuals. Additionally, pre-processing
methods were applied to the raw hand-perspective images to get
rid of the effect from the image background. First, the objects were
segmented out of the original image and randomly blurred. Then,
Gaussian noise with random variance was added in the background
to make the network more robust to the various real-world back-
grounds. Finally, the blurred object was randomly located in the
noisy background to form the final training image. The bounding
box information of the object location was also recorded as a part of
the true label, which has a potential value for indicating the ground

Open Palm Medium Wrap Power Sphere

Parallel Extension Palmar Pinch

Figure 4: The selected grasp types.
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truth to any object detection study. The complete process of image
collection and usage is shown in Fig. 3.

4 METHODOLOGY
The proposed model for estimating probability distributions and
multi-class ranking is applicable to the most common CNN struc-
tures. The study utilizes several popular deep CNN structures as
the base network to extract features from images, and builds a
model to solve the distribution estimation problem by exploiting
the ranking label and visual information through a customized loss
function on the basis of the Plackett-Luce Model for multi-class
label ranking. In this section, the aforementioned implementation
details are explained.

4.1 Learning Models of CNN
In this work, we apply efficient image-classification frameworks in-
cluding GoogLeNet [28], InceptionV3 [29] and ResNet50 [16] as the
examples of a base network structure for comparison. The adopted
CNNs here have relatively small model size but deep network struc-
ture, which could obtain high accuracy with fast training speed and
low overfitting [29]. GoogleNet, which is also called InceptionV1,
has 22 layers, 9 inception modules and 7 million parameters. It
requires fewer parameters than its previous structures while pro-
viding higher accuracy. The inception layer could cover a bigger
area, but also keep a fine resolution for detailed information on
the images. The InceptionV3 is a 42-layer deep learning network
of 23 million parameters, with additional batch normalization and
factorization ideas introduced to reduce overfitting. The ResNet is
the abbreviation of Residual Network, which learns the residual of
skipping connections and thus enables the development of much
deeper networks. ResNet50 has 50 layers and 25 million parameters.

4.2 Maximum Likelihood Estimation for
Ranking Label

The considered true label here to train CNNs is the ranking label,
which is a 5-dimensional ranked list of grasps. Therefore, we define
a proper loss function for the CNN to extract information from this
high-dimensional label. The aim of the loss function is to maximize
the probability of a specific 5-dimensional permutation among all
possible permutations, rather than maximizing the probabilities
of one or more classes, i.e. grasps, in the list. The probability of a
ranking is calculated by the Plackett-Luce model, which links the
ranking label to a probability distribution and thus leads to our loss
function for the problem.

4.2.1 The Plackett-Luce Model. The Plackett-Luce (PL) model es-
tablishes a natural bridge between label ranking and probability
distributions [20, 23]. In this model, n elements of interest have a
corresponding probability distribution ω = (ω1,ω2, · · · ,ωn ) to be
estimated, satisfying

∑n
i=1 ωi = 1. The distributionω is related to

the probability of a possible ranking via:

P(πk |ω) =

n−1∏
i=1

ωπ k ⟨i ⟩∑n
j=i ωπ k ⟨j ⟩

, (1)

where π =
{
π 1,π 2, · · · ,πN

}
is a set of independent rankings of n

elements. Here, N is the total number of the collected ranking labels.

Each permutation πk for k ∈ {1, 2, · · · ,N } represents a possible
ranking for the n elements, where πk ⟨i⟩ is the top ith element
among all items.

4.2.2 Maximum Likelihood Estimation Based on PL Model. The
maximum likelihood estimate of the probability distribution ω is
given by those parameters that maximize the likelihood in Eq.(1)
or, equivalently, the following log-likelihood function:

ℓ(ω) =

n−1∑
i=1

©«lnωπ k ⟨i ⟩ −
n∑
j=i

lnωπ k ⟨j ⟩
ª®¬ . (2)

In our problem, there are n = 5 grasp types to be ordered. Ac-
cordingly, the kth ranking label can be demonstrated as

πk =
(
πk ⟨1⟩ ,πk ⟨2⟩ , · · · ,πk ⟨5⟩

)
=
(
πk ⟨1⟩ ≻ πk ⟨2⟩ ≻ · · · ≻ πk ⟨5⟩

)
,

(3)

where πk ⟨i⟩ can be any gesture shown in Fig. 4. Therefore, the
estimated probability distribution ω̂ can be expressed as:

ω̂ = argmax ℓ(ω)

= argmin loss,
(4)

where loss is the loss function defined as
loss = −ℓ(ω), (5)

andω = (ω1,ω2, · · · ,ω5) is the true distribution for 5 grasps. De-
noting the estimated distribution ω̂ = (ω̂1, ω̂2, · · · , ω̂5) as:

ω̂ = (ω̂π̂ k ⟨1⟩ > ω̂π̂ k ⟨2⟩ > · · · > ω̂π̂ k ⟨5⟩), (6)

for the kth input, we obtain the estimated ranking of all labels as:

π̂k =
(
π̂k ⟨1⟩ , π̂k ⟨2⟩ , · · · , π̂k ⟨5⟩

)
=
(
π̂k ⟨1⟩ ≻ π̂k ⟨2⟩ ≻ · · · ≻ π̂k ⟨5⟩

)
.

(7)

Thus, by estimating the probability distribution ω̂, we simultane-
ously solve the ranking problem for n = 5 classes.

5 EXPERIMENTS AND EVALUATIONS
5.1 Experiment Setup
5.1.1 Dataset. We evaluate the proposed model on our custom
dataset introduced in Section 3. In total, 4466 pairs of hand-view
image and its corresponding ranking label are included in the ex-
periment, which are generated from 413 hand-perspective pictures
and 11 labellers. The model is trained by 80% portion of those un-
seen data-pairs from objects randomly selected, whereas, tested on
the remaining 20% images and labels from other objects. All input
images are resized into the dimension of 224 × 224. In the ranking
label, 5 grasp types are contained as shown in Fig. 4: Open Palm,
Medium Wrap, Power Sphere, Parallel Extension and Palmar Pinch.

5.1.2 Training Setup. Here we use GoogLeNet, InceptionV3 and
ResNet50 without their last fully connected layers as our base
network respectively, and leverage transfer learning to initialize
these structures with their pre-trained weights on ImageNet [8].
On top of this, we build fully connected layers whose output is
a 5-dimensional vector with sigmoid activations. We train these
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architectures with stochastic gradient descent, where the learning
rate ranges from 10−5 to 10−3. To comparatively test the perfor-
mance of coping with overfitting, for the GoogLeNet structure,
we add L2 regularizers with a regularization parameter λ in each
convolutional layer, where λ ranges from 0.0002 to 0.02, among
which 0.002 is the default value given by official GoogLeNet model;
we choose two more values around the default parameter to test
the model performance. We define our own loss function as (5) to
estimate the multi-class probability distribution by learning the
ranking label.

5.1.3 Accuracy to Evaluate Ranking. The original output of the
trained CNNs is an estimated probability distribution of 5 dimen-
sions: ω̂ = (ω̂1, ω̂2, · · · , ω̂5). Nevertheless, the benchmark to eval-
uate the prediction is the collected ranking label with the form of
(3). Therefore, we compare the estimated permutation (7) with the
true ranking label to evaluate our model.

There are two common ways to quantify the similarity between
two sorted lists: 1) rank correlation-based method, 2) set-based
measure. The first method essentially measures the probability of
two items being in the same order in the two ranked lists, where
the exact position of an item has no effect on the final similarity
score, such as Kendall’s tau coefficient [24]. However, in practice,
we are more concerned with the grasps of higher relevance, which
are the top rankings among all grasps. Therefore, we utilize the
second approach ([30]) to compare two permutations. Generally,
this method finds the average fraction of the content overlapping
of subsets with different depths. This average overlap score, which
is defined as the accuracy for our problem, is calculated as follows:

acc =

∑n
i=1 fi

n
(8)

where n is the total number of labels in the list, and fi is the fraction
of the content overlapping over the subsets of the top i rankings
from the two ranked list to be compared, i.e. fi = i′

i where i ′ ≤ i
is the number of overlapping items of the top i rankings between
two ranked lists. Since observing a common item at higher rank
contributes to all the lower ranked subsets, this approach is natu-
rally top-weighted, i.e. it assigns higher relevance to items at the
higher ranks. For instance, we compare the lists of A: {a,b, c} and
B: {a, c,b} with n = 3, and their subsets with depth i = 1 are {a}
and {a} respectively, where the number of overlapping item i ′ = 1

Table 1: Prediction performances of GoogLeNet, Incep-
tionV3 and ResNet50: L.R. indicates learning rate. The accu-
racy of GoogLeNet is averaged over different regularization
parameters λ. GoogLeNet leads to better performances than
InceptionV3 and ResNet50; learning rate of L.R. = 10−3 leads
to the optimums of all 3 frameworks. InceptionV3 obtains
better performance than ResNet50.

L.R. Accuracy
GoogLeNet InceptionV3 ResNet50

10−5 86.3866% 86.2048% 85.7910%
10−4 86.0603% 86.2027% 86.1239%
10−3 86.5269% 86.4930% 86.4142%

and fi =
1
1 = 1. When i = 2 the subsets of A and B are {a,b}

and {a, c}, where i ′ = 1 and fi =
1
2 . Similarly, for depth i = 3,

the subsets are A and B themselves, with all the i ′ = 3 items over-
lapping and fi =

3
3 = 1. The final accuracy can be calculated as

acc = (1 + 1
2 + 1)/3 = 83.33%.

5.2 Results and Discussion
5.2.1 Results. We train the proposed model on our dataset with
GoogLeNet, InceptionV3 and ResNet50 as base networks, and eval-
uate the trained CNNs through the accuracy defined as (8). Table
1 presents the prediction performances of models with structures
of GoogLeNet, InceptionV3 and ResNet50, where the accuracy of
GoogLeNet is averaged over different λ. Table 2 shows the predic-
tion performances of our model based on GoogLeNet structure with
respect to different regularization parameters. For each model, we
determine the best learning rate (L.R.) by comparing their accuracy.
Specifically for the GoogLeNet framework where L2 regularizers
are embedded in each convolutional layer, we determine the optimal
regularization parameter λ.

Overall, the accuracy of 15 trained models is around 86%. The
best model among all trained CNNs is the structure of GoogLeNet
when λ = 0.002 and L.R. = 10−3, where the accuracy is 87.1836%.
It implies that given an object image, in average over 87% portion
of its corresponding ranked list of grasps could be predicted ac-
cordingly, where the grasps with higher ranks contribute more to
the accuracy than the lower ones. According to Table 1, compared
with InceptionV3 and ResNet50, GoogLeNet performs relatively
better even with much fewer parameters (as introduced in Section
4.1), partly because of its embedded L2 regularizers, which reduce
the overfitting to training data. The training speed of GoogLeNet
is also 2 times higher than the other CNNs due to its smaller pa-
rameter size. Moreover, InceptionV3 demonstrates slightly better
performance than ResNet50. The reason for this difference could
be that InceptionV3 could deal with detailed information better,
and the grasping targets are always small in size. For all 3 CNN
frameworks, the learning rate of L.R. = 10−3 leads to their opti-
mum performances. Specifically, on the basis of Table 2, it is shown
that the optimal parameters for L2 regularizers and learning rate

Table 2: Prediction performances of GoogLeNet: λ indicates
the L2 regularization parameter. The optimal parameter is
λ = 0.002 and L.R. = 10−3, resulting in the highest accuracy
of 87.1836% among all 15 trained models.

λ L.R. Accuracy of GoogLeNet

0.0002
10−5 86.4080%
10−4 86.0368%
10−3 86.1031%

0.002
10−5 86.1944%
10−4 86.0368%
10−3 87.1836%

0.02
10−5 86.5573%
10−4 86.1073%
10−3 86.2939%

261



From Hand-Persp. Visual Info. to Grasp Type Prob.: Deep Learning via Ranking Labels PETRA ’19, June 5–7, 2019, Rhodes, Greece

of GoogLeNet are λ = 0.002 and L.R. = 10−3. The optimum of
λ = 0.002 is same as the default value given by GoogLeNet, and
the optimum of L.R. = 10−3 is aligned with those of the other two
CNNs.

5.2.2 Discussion. Here we note that expecting an accuracy as high
as the typical object classification implementations would be mis-
leading due to two apodeictic facts: 1) more difficulties of predicting
an ordered list of labels than predicting one individual label; 2) the
biases from different labellers and complex object shapes for each
image.

With the goal of predicting a distribution and ordering five grasp
types, the 100% accuracy of definition (8) means that not only
detecting the most possible grasp type for the given image, but also
finding the exactly same order of all gestures as the true ranking
label, i.e. for any two grasps among the 5 gestures, they have to be
in the same order as the true label, and there are C(5, 2) = 10 pairs
of them in total. Thus compared to the typical grasp classification
problems, our task is more difficult due to the nature of the problem
and thereby results in a more practical accuracy.

On the other hand, the 11 labellers have different grasp prefer-
ences for each image. Even if when the same person grasps the
same object for multiple times, different gestures may be used un-
consciously. In this work, 11 labellers annotated the same image
set, which refers that each image could have more than one and
up until 11 kinds of ranking labels according to the distribution of
labellers’ preferences, and all of the 11 true labels would be the
benchmarks for calculating the average accuracy. Thus when pre-
dicting a ranked grasp list for a specific image, an average 100%
accuracy requires the prediction to be completely the same with
all of the 11 true labels, i.e. the 11 true ranking labels have to be
exactly the same, which is not feasible. Therefore the accuracy
would always include the natural biases from different labellers.
However, these biases are meaningful and necessary to reflect the
properties of objects with different complexity. For example, con-
sidering some simple objects such as a book, it is very obvious to
utilize Parallel Extension for grasping, and the orders of the 5 grasps
given by different labellers could be very similar, where the biases
from labellers are relatively small. In this situation, the predicted
possibilities of grasps may reflect a significant decline from the top
grasp to the last one. Whereas, for objects with complex shapes
such as the hand sanitizer bottle whose different parts may lead to
different grasp types, the ranked lists of grasps given by different
labellers could be quite different, and thus result in a more uniform
predicted distribution over all the grasps. When combined with
other evidences (EEG and EMG), the higher uniformity of estimated
distributions from visual system, which indicate the higher user
biases and object complexity, would contribute less to the final
predicted distribution and thus make the entire system dependent
more on other signal resources from human interference, leading
to more reliable results.

6 CONCLUSION
In this paper, we consider the probability estimation problem of
multi-class classification based on label ranking for a prosthetic
hand design relying on the visual information obtained from differ-
ent perspectives. Considering the asymmetric shapes of ordinary

objects and the visual pattern of robotic hands, we collected a
dataset with images of various objects from both hand- and eye-
views simultaneously, where the eye-view images were used only
for labelling, while the hand-perspective pictures were fed to the
CNN after augmentation and preprocessing. The datawere collected
from different directions, and videos of both perspectives, EMG sig-
nals, andmovement kinematics of the upper armwere also recorded
during the grasp for the future combination of multiple systems.
Furthermore, we built a probability-based classifier instead of pro-
viding absolute positive or negative predictions for the prosthetic
hand design by employing the Plackett-Luce model. By introducing
probability models on rankings to optimize permutation domain
problems, the PL model links the distribution estimation with the
problem of label ranking. By solving a maximum likelihood estima-
tion problem based on this model, a customized loss function was
defined for training CNNs to estimate the probability distribution
over the ordered labels. The ranked list of grasps was estimated
from the predicted distribution by sorting the possibilities of labels.
We utilized several efficient CNNs to extract features while imple-
menting and testing the model, and found the best framework and
parameters among all trained CNNs by comparing their results. In
the future, this work could be further extended to other applications
that focus on the distribution estimation and label ranking.
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