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Abstract— In this work we present a framework that is
capable of accurately representing soft robotic actuators in a
multiphysics environment in real-time. We propose a constraint-
based dynamics model of a 1-dimensional pneumatic soft
actuator that accounts for internal pressure forces, as well
as the effect of actuator latency and damping under inflation
and deflation and demonstrate its accuracy a full soft robotic
snake with the composition of multiple 1D actuators. We
verify our model’s accuracy in static deformation and dynamic
locomotion open-loop control experiments. To achieve real-time
performance we leverage the parallel computation power of
GPUs to allow interactive control and feedback.

I. INTRODUCTION

Soft robotic systems can provide many advantages over
rigid robots. For example, the compliance of a soft manip-
ulator allows safe interaction with fragile objects, such as
uncooked eggs [1, 2]. A soft robotic snake can navigate
through narrow passages to perform tasks in regions unreach-
able with rigid robots [3]. On the other hand, soft robots
are harder to model and simulate than rigid robots, due to
their infinite degrees of freedom (DOFs). Thus, one often has
to compromise between simulation accuracy and simulation
time. In recent work [4, 5], the authors developed a frame-
work of deformable online simulation that can achieve real-
time simulation using relatively coarse meshes. Further, the
authors proposed a model order reduction method by running
expensive offline simulations and applying machine-learning
techniques on the generated dataset [6].

However, the compromise between accuracy and simula-
tion time is often hard to make. An accurate model is im-
portant to bridge the gap between simulation and reality for
control design. On the other hand, online trajectory planning
and model predictive control require the prediction of future
states with low-latency. In addition, even learning-based con-
trollers, such as those trained with Reinforcement Learning
(RL) [7, 8, 9], typically require thousands of samples to
converge, making efficient simulation crucial. Approximate
models can enable faster simulations; Furthermore, even in
rigid-body simulators, the modeling errors, inaccuracies, and
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lack of actuator dynamics on the simulator create a gap to
the reality that often needs to be bridged before applying
controllers learned in simulation to the real robot [10].

In this work, we aim to develop a real-time, high-fidelity
simulation for soft robotic systems. We present a compliant
constraint dynamics model for a soft snake robot [11, 12, 13].
Our model is able to accurately represent the deformations
of the snake links while being efficient enough for real-
time simulations. To achieve low-latency simulation, we use
a GPU-based physics simulator that leverages large-scale
parallel iterative solvers to efficiently solve large systems
[14]. The resulting simulation is validated against a real
robotic snake to verify that the deformation model is accurate
and that the dynamics of the simulation match that of the real
system. In addition, we measure and validate the actuator
and inflation latency to ensure accurate control response. In
summary, our main contributions are:

• A dynamics and actuation framework for 1D pneumatic
soft actuators that accurately represents a large range of
deformations;

• A model for a modular soft robotic snake that accurately
represents its dynamics;

• Model validation in static deformation and dynamic
locomotion tests;

• A simulator framework suitable for performing real-
time control of soft robots.

II. RELATED WORK

The field of soft robots includes a large and varied range
of designs that incorporate compliant materials and actuators
in various forms. Soft robots may have a few flexible regions
in them and may be driven by tendons [15], while completely
soft pneumatic actuators can be driven by exerting a range
of pressures within deformable bodies. The use of pressure
leads to many intricate designs that exploit the material
geometry to achieve the desired actuation [1, 16]. To allow
a large range of pressures and material deformations, hybrid
materials are often used on the pressure chambers, such
as inextensible layers and fiber reinforcements [17]. Our
modular soft snake robots use hybrid materials [12, 13] to
achieve highly efficient 2D terrain locomotion.

The diversity of soft materials and difficulty in accurate
modeling of soft robots lead to an increasing need for build-
ing a realistic simulation for deformable robots. Duriez et al.
[18] presented a framework for simulating soft robots using
a quasi-static approach based on Finite Elements (FEM). In
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Fig. 1. (a,b) Single soft link. The chambers are wrapped with a fiber
reinforcement, preventing it from increasing in radius when pressure is
applied. The center of the link contains an inextensible layer that prevents
it from expanding in length [11]. The tiny spheres attached to the rigid
plates are markers used for tracking the curvature in the experiments. (a)
No pressure applied. (b) 8 psi applied on left chamber. (c) Full assembly
of the robotic snake with four links. The main controller receives wireless
commands from the computer, and passes it over to each slave controller,
which activates the solenoid valves that release the pressure to the soft
actuator. (d) Snake in simulation.

this work, we also use FEM with tetrahedral elements as a
fundamental building-block. In addition, we combine these
elements in a multiphysics system with spring networks,
frictional contact, attachment constraints for soft/hybrid ma-
terials and articulated rigid bodies. We perform implicit time-
integration to simulate dynamic trajectories. Recent work by
Pozzi et al. [19] used a rigid-body model, fitted to an offline
FEM simulation augmented with stiff springs to achieve real-
time updates. In this work, we simulate the finite-element
models and spring networks directly, using the large-scale
parallelism of graphics processing units (GPUs) to achieve
online update rates, therefore not requiring an expensive
offline simulation and data fitting stage.

Tan et al. [20] propose several techniques for bridging
the reality gap in simulations. Among them there is a
latency introduced for the delay between when a command
is sent and when it’s executed. Since soft actuators have an
over-damped response, our work introduces system dynamic
model response to the command on top of the latency.

III. SOFT ROBOTIC SNAKE

The snake is made of soft bending actuation modules
with integrated curvature sensing [11], as shown in Fig.
1c. Each soft bending actuator segment is comprised of
two soft linear actuators and an inextensible constraint layer
between them. The soft links are made of silicone rubber
with cavities wrapped in a fiber reinforcement, which limits
the radial deformation when pressurized. In the center of
the link, between the two chambers, there is a custom
integrated curvature sensor, and a plastic film that inhibits
linear extension. This set of constraints results in bending the
entire soft module when one chamber is pressurized, as seen
in Fig. 1b. The curvature sensor utilizes a magnet and a Hall
effect sensor, mounted on a flexible circuit board [11]. Caps

are attached to both ends of the actuator to seal the chambers
and allow modular connections with other segments. The
caps are made of two ABS plates sandwiching the rim of
the silicone. The actuator is driven by two 3-2 (3-port, 2-
state) binary solenoid valves, each connecting one pressure
chamber to a common pressure source. The valves can either
inflate or deflate a given actuator chamber. The pressure
in each chamber is controlled using a 60 Hz Pulse-Width
Modulation (PWM) on the valves, which are set to operate
in complete antagonism, so when one chamber is inflating
the other is always deflating. This reduces the number of
required inputs per chamber to one, corresponding to the
single (active) DOF of the bending actuator.

IV. SIMULATOR

The continuous equations of motion for the multiphysics
simulator are derived from Lagrangian mechanics, and are
given in general form by the following,

Mq̈− f(q, q̇)− JTb λb − JTnλn − JTf λf = 0

cb(q,p) + Eλb = 0

0 ≤ cn(q) ⊥ λn ≥ 0

∀i ∈ A, DT
i q̇ +

|DT
i q̇|
|λf,i|

λf,i = 0

∀i ∈ A, 0 ≤ |DT
i q̇| ⊥ µiλn,i − |λf,i| ≥ 0

∀i ∈ I, λf,i = 0.

These equations describe the motion of a generic dynamics
system with frictional contact forces. The state of the system
is described by a vector of generalized coordinates q ∈ Rnd

with nd DOFs, determined by the number of particles and
rigid bodies on the system. The inertial properties of the
system are represented by the mass-matrix M ∈ Rnd×nd ,
with f(q, q̇) a generalized force function that includes ex-
ternal and gyroscopic forces. The vector cb(q) is a set of
bilateral constraints of length nb, with λb the associated
Lagrange multipliers. Elastic energy potentials are defined in
terms of compliant constraints, here E ∈ Rnb×nb is a block-
diagonal compliance, or inverse stiffness matrix as described
by Servin et al. [21]. The target pressures are grouped into the
vector p, which are parameters to the actuation constraints
described in section IV-C. The contact and frictional forces
are based on Coulomb’s model, which defines an admissible
cone of contact forces [22]. Here cn(q) are unilateral contact
constraints, with nc the number of contacts in the system,
and λn,i and µi the normal force Lagrange multiplier and
friction coefficient for the ith contact respectively. The fric-
tional forces for a contact are parameterized by λf,i, with
a corresponding basis Di that defines the surface tangent
plane at the contact point. The active contact set is defined
as A = {i ∈ (1, · · · , nc) | µiλn,i > 0}, with inactive
contacts I being its complement. The constraint Jacobians
Jb,Jn contain the gradient of bilateral and normal constraint
functions with respect to q, and we define the set of frictional
basis vectors as the matrix Jf = [D1, · · · ,Dnc

]T .
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A. Particles
Each deformable link is modeled as a collection of parti-

cles connected by constraints. This is a flexible representation
that allows fine-grained control over different sections of
the soft body, while being efficient enough for real-time
simulation. A particle with index i adds three additional
DOFs to the system,

qi =
[
x y z

]T
. (1)

Assuming a lumped mass model, each particle is assigned a
fraction of the connected tetrahedral elements mass (Section
IV-C.2). The mass-block for the particle is then given by
Mi = m13, where m is the particle mass, and 13 is the
3-dimensional identity matrix.

Fig. 2. Rigid links and wheels are described by the translation of the
body’s center of mass from the origin x and, it’s orientation expressed as
a quaternion θ.

B. Rigid Bodies
We describe the state of a rigid body with index i using a

maximal coordinate representation consisting of the position
of the body’s center of mass, xi ∈ R3, and its orientation
expressed as a quaternion θi = [θ1, θ2, θ3, θ4]T ∈ R4. We
group these components together so the state sub-block for
a single rigid body is

qi =
[
xTi θTi

]T
. (2)

C. Constraints
1) Actuation Constraints: To perform actuation we con-

strain particles together through equations of the form,

cdist(q, p) = |qi − qj | − rε(p) = 0, (3)

where qi and qj are particle positions, and r is a rest length
to maintain between them. The target pressure p induces a
strain ε(p) that adjusts the rest length and causes contraction
or expansion. Assuming that deformation is linear with
stress, and that it occurs primarily along the chamber’s main
axis, the amount of expansion/contraction is given by the
following relation between material stiffness determined by
the Young’s Modulus (Y ) and pressure p,

ε(p) = 1 + p/Y. (4)

Furthermore, we use distance constraints with constant
rest length to model the structural stiffness in the deformable
chamber, as described in Sec. V.

2) Tetrahedral Finite-Elements: In addition to distance
constraints, tetrahedral finite-elements are used to model the
solid chamber material. Assuming a constant strain element
and a linear isotropic constitutive model, each tetrahedron
defines a 6-dimensional constraint vector,

ctetra(q) + Etetraλ = 0, (5)

where ctetra(q) = [εxx εyy εzz εyz εxz εxy]T is the vector
of corotational strains in Voigt notation, and Etetra is the
constant element compliance matrix, given by

Etetra =
1

Ve Y


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν

 .

where Ve is the element volume, Y and ν are the material
Young’s modulus and Poisson’s ratio, respectively.

3) Rigid Body to Particle Attachment: In order to connect
soft links to rigid bodies, an attachment constraint between
a particle and a point on a rigid body is defined as follows,

cattach(q) = qx + R(qθ)r− qp = 0. (6)

This is a vector-valued function that adds three separate
constraints, one for each x, y, z axis respectively. Here qx,qθ
are the rigid body position and orientation respectively, and
qp is the particle position. R(qθ) is the rotation matrix
obtained from the body’s orientation, and r is the attachment
point expressed in the body’s local frame.

4) Rigid Body Joints and Contact: Along with the de-
formable sections, we model the articulated carriage as rigid
bodies, with wheels connected to the main frame using hinge
joints as described by [23]. Contact between the wheels and
the ground is modeled by non-interpenetration constraints of
the form:

cn(q) = nT [a(q)− b(q)] ≥ 0, (7)

where n ∈ R3 is the contact plane normal, a and b are
points on a rigid or deformable body. Frictional forces are
included using a Coulomb model derived from a principle
of maximum dissipation that limits the contact forces to a
cone. We refer the readers to the survey paper by Stewart
[24] for more detail.

D. Time-Stepping

The simulation is advanced in time with a first-order
implicit time-discretization of the equations of motion similar
to the method in [25]. An implicit discretization is chosen
as it allows taking large time-steps and avoids constraint
drift. At each time-step, the nonlinear system of equations
resulting from the implicit discretization is solved using
Newton’s method. To solve the complementarity conditions
associated with contact we use a non-smooth reformulation
based on the Fischer-Burmeister function as described in
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[26]. Each Newton iteration requires the solution of a sparse-
matrix equation of the form[

JM−1JT + E
]

∆λ = b. (8)

Where J = [JTb JTn JTf ]T is the matrix of constraint Jaco-
bians, E is a block-diagonal compliance matrix that includes
the tetrahedral compliance matrices, and b includes the
constraint function residuals evaluated at the current Newton
iterate. This is a positive semi-definite system that we solve
using the Preconditioned Conjugate Residual method (PCR)
[27]. This is an iterative Krylov method similar to Conjugate
Gradient (CG) but with smooth error reduction, making it
better suited for real-time applications with a fixed compu-
tational budget. Like CG, the primary computation cost of
PCR is the performing sparse matrix-vector multiplications.
However, these multiplications are highly parallelizable, and
can be done efficiently by assembling J,M,E,b on the GPU
in compressed row-storage (CSR) format, and performing the
multiplication with optimized kernels [14]. In our simulator
we use a simple diagonal Jacobi preconditioner since it is
trivial to parallelize.

V. SOFT ROBOTIC SNAKE MODEL

The soft links of the snake robot are made of
EcoflexTM 00-30 silicone rubber which has material param-
eters Y = 66.243KPa, and ν = 0.4999 [28]. We construct a
triangular mesh of the surface and tetrahedralize it using Tet-
Gen [29]. The link mesh was created with evenly distributed
particles, we do not explicitly represent the cavity with
tetrahedral elements. The mesh was carefully constructed to
provide a radially symmetrical tetrahedron structure, as seen
in Fig. 3.

Since the inextensible layer in the center of the link
has a deformation threshold that is beyond the range of
forces to be applied on the soft links, it is acceptable to
model it as a non-deformable constraint between particles
along the center plane. Similarly, the radial constraint on the
chambers are defined as a set of inter-particle constraints
over coplanar particles along the link. Although it would
be possible to drive each link’s expansion using surface
pressure forces directly, the other constraints in the link allow
us to simply control the chamber volume using constraints
between particles along the primary axis of expansion.

Only one chamber on the link is active (i.e. pressurized)
at a time, so this set of actuation constraints only applies
to the expanding chamber. Fig. 3 displays the constraints
overlaid on the link. The link mesh was subdivided in
13 cross-sections along its length, in order to allow real-
time computation, while maintaining good accuracy on the
material deformation.

The links are then connected to each other through the
rigid bodies that contain the electronics necessary to control
the snake robot. In addition, the rigid bodies are attached
to the wheels via. hinge joints. The wheels provide contact
with the floor and model the anisotropic friction that a real
snake has from its scales.

Type Quantity
Rigid Bodies 15
Particles 1504
Distance Constraints 1460
Tetrahedral Finite Elements 4536
Rigid Joints 10
Particle Attachments 217

TABLE I
SIZE OF THE STRUCTURE FOR ONE SIMULATED SNAKE

(a) (b) (c)

Fig. 3. (a) Front and top view of chamber with constraints
between particles on link. Green: stiff inter-particle constraint to
limit chamber expansion. Blue: stiff constraints to ensure chamber
radial perimeter is constant. Red: distance constraint used to ex-
pand chamber as overpressure is applied. (b) Soft link mesh. (c)
Constraints displayed on simulation (best seen in digital format).

The type and number of all DOFs, and constraints in the
simulated snake are displayed in Table I.

A. Open-Loop Control

The snake assembly consists of four links attached to-
gether, as seen in Fig. 1. An undulating motion that propels
the snake is given by the control equation 9, which outputs
the pressure for the link i.

ai ≡ min(1,max(−1, (sin(ωt+ αi) + φ))A. (9)

If ai is positive, the link will inflate one chamber of
the link, while if ai is negative, it will inflate the other.
The parameters ω, α, φ, and A are the base oscillation
frequency, measured in Hz, the phase shift between links
(radians), the offset value for the motion ([−1, 1], scalar),
and the oscillation amplitude ([0, pmax], Pa), respectively.
The oscillation frequency dictates how fast the actuators
will switch direction, and the phase delay between links
is what generates the wave pattern that propels the snake
forward. These parameters set the base undulating motion.
By changing the offset φ, applied to all links, the controller
will inflate one side for longer than the other. This results
in the snake propelling itself more to the opposite direction
than the chambers that are more inflated, making the tra-
jectory of the center of mass moves with a curvature radius
determined by this offset and the friction with the ground.
Finally, the amplitude A limits the maximum pressure during
the oscillation, thereby controlling the snake’s speed. The
parameters that make the snake move forward depend on
the physical properties of the snake, such as weight, length,
friction coefficient with the floor, and were determined ex-
perimentally in [11]. This controller is an open-loop method,
which generates the forward motion and allows to make
turns, but no feedback is given if the trajectory is deviating
from the desired trajectory.
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The pressure delivery is not instantaneous but limited
by the maximum airflow allowed by the valves. Assuming
the pressure source can reliably maintain a constant output
pressure ps, the air flow v to the chamber is given by [30],

v2 =
2

ρ
(pt − ps), (10)

where ρ is the air density and pt is the pressure in the
chamber. This means the pressure update is proportional to
the square of the difference between the current pressure and
the desired pressure. The pressure update for inflation in each
step is then defined based on the difference ∆pi, in Eq. 11.

∆pi =
ai(t+ h)− pi(t)

ps
, (11)

The deflation releases pressure in the atmosphere while
keeping its own pressure relatively constant due to the change
of volume. Therefore, the deflation ratio should be close to
linear up to a threshold Tp when it is proportional to the
over-pressure with a damping,

pi(t+ h) =

{
pi(t) + ps∆pi

2ki is inflating
pi(t)−min(pi(t)kd, Tp) is deflating

(12)

where ki, kd ∈ (0, 1] are the inflation damping parameters,
and are tuned according to the experimental data.

VI. EXPERIMENTAL VERIFICATION

For all tracking experiments, the poses of the rigid links
were captured using the motion capture system (MOCAP)
by placing four markers on each rigid extremity so that it
can collect their full poses. The MOCAP system contains 11
cameras surrounding the observable space of 4×3 m2. This
redundancy allows the information of links to be collected
with high precision and minimal loss of tracking during
the experiments. In order to eliminate remaining outliers,
every experiment is repeated for 10 times unless otherwise
mentioned. To ensure data sanity, every sample that deviates
more than an expected maximum displacement from the
collected values is pruned and not used in the analysis, as this
type of samples results in a data collection with negligible
standard deviation. Fig. 1 shows the markers on the top
corners of the rigid plates.

A friction coefficient of µi = 1 has been used for all
experiments. We implement our simulator in CUDA and run
it on a computer with an Intel Core-i7 8520K, 32GB of
RAM, and one NVIDIA GTX 1080 Ti GPU. We use a fixed
time-step of h = 0.0083s, each time-step performs 4 Newton
iterations, with each linear system solved approximately
using 20 PCR iterations to ensure a fixed computational cost.

A. Quasi-static Verification

The first experiment on the simulation is to verify whether
the pressure actuator follows the same geometrical behavior
as the real link. For this experiment, the curvatures of the
real links were obtained by subtracting the yaw of the rigid
connectors attached to each soft link, for the varying over-
pressures (the pressure that exceeds the resting atmospheric

pressure) from 0 to 10 psi, moving up with steps of 1
psi for both directions on the link, and averaged over 300
samples. Negative values show the inflation of left chamber
and positive values are for the right chamber.

Fig. 5. Curvature vs. Pressure for simulation and a real link. The top
plot shows that the curvature follows a linear relationship with the pressure
applied. The bottom plot is the relative error.

From Fig. 5, it can be seen that the curvature increases
linearly with the pressure within a range. Particularly, the
spring model is able to closely match the real curvature, and
accurately follows the linear model up to 8psi. Ecoflex 00-
30 Young modulus is 66 kPa, at 9 psi (62 kPa) it nears 2x
expansion, which is the limit at which the material is linear.
This behavior is also clearly observed by the relative error
plot. When the pressure exceeds 8 psi, the real link starts to
bulge over imperfections in the manufacturing, and on the
opposite side, it folds in itself, resulting in a deviation from
the linear model. Besides, since the extra pressure is forcing
over the imperfections of the manufacturing process, there is
a potential risk of damaging the links in the long term. For
these reasons, it was deemed that the safe pressure threshold
shall be 8 psi, and all the remaining tests were restricted to
up to that range.

B. Dynamic Verification

The dynamic verification starts with the analysis to the
step response on the actuators. A single link was used to
capture the rate at which it inflates and deflates from rest to
60− 100% at 10% steps. These trials were used to tune the
gains ki = kd = 0.23 and Tp = 0.68. The results are seen
in Fig. 6.

The simulator trajectory is then tested with an open-loop
generator from Eq. 9 and compared with the real snake robot
using the following parameters ω = 2Hz, α = π/2, ψ = 0
and A = pmax = 8psi. Since it’s an open-loop control, it
is expected that due to model inaccuracies and unmodeled
dynamics the simulator will have error accumulated along
the trajectory. As a result, the simulated trajectory may
diverge from the actual trajectory over time. The comparison
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Fig. 4. Visual comparison of link expansion after settling from -10 to 10 psi overpressure. Negative values mean the left chamber is inflated, while
positive values are for the right chamber. The simulation displays high accuracy on the curvature up to 8 psi, where the dashed lines were traced. After
that the pressure becomes excessive and the real link stops following the linear model (best seen in digital format).

Snakes (#) 1/4 1 2 3 4 5 6 7 8 9 10
Assembly (ms) 0.74 1.11 1.41 2.33 3.41 5.59 6.19 6.45 7.37 8.48 10.31
Solve (ms) 4.96 10.52 25.06 31.90 43.12 50.41 58.63 66.95 79.73 86.89 95.57
Total (ms) 5.70 11.63 26.47 34.23 46.53 56.00 64.82 73.4 87.10 95.37 105.88
Total/Snake (ms) - 11.63 13.23 11.41 11.63 11.2 10.80 10.48 10.88 10.59 10.58

TABLE II
BENCHMARK RESULTS FOR OUR SIMULATOR

Fig. 6. Step analysis for chamber inflation (left) and deflation (right) with
approximate response from simulator.

was made using the center of mass of the snake. The
divergence can be addressed with the use of closed-loop
feedback control for both simulated snake and the real snake
robots. However, from Fig. 7, it can be seen that starting
from the same initial condition, the simulated trajectory
closely matches the real trajectory for the execution time.
The inclusion of the latency model for the pressure update
makes the trajectory of the center of mass go in the same
overall direction and amplitude as the real snake.

Fig. 7. Trajectory comparison between collected data (blue), simulator
without actuator latency (green), and with latency (red). The latency model
in the pressure update makes the simulator’s trajectory be closer to the real
snake under same conditions (best seen in digital format).

C. Benchmarking

In order to test scalability of the system, we benchmark
simulation times for a single soft link, a full snake with 4
links, and up to 10 snakes, each with 4 links. The linear
system for a single Newton iteration corresponding to a
single snake is a sparse matrix of roughly 30000 × 30000.

Each frame is sub-divided in two sub-steps for the constraint
solver, and the optimization runs with 20 iterations each.
The total per-frame simulation times are in Table VI. From
the results, it can be seen that simulation time increases
linearly with the number of links and snakes. Linear scaling
is expected, since a single link saturates the GPU. On
average, it takes less than 12 ms to simulate each snake, with
optimal performance obtained when simulating seven snakes
together. One single snake takes 8.9s per frame running at
3.3GHz on an Intel Core i7 5820k.

VII. CONCLUSION

We have presented a dynamical model for simulating 1D
pneumatic actuators and a framework to simulate it in a
multi-physics environment in real time. By comparing the
simulation with a real soft robotic snake, it is demonstrated
that the simulated snake produces real-time high-fidelity
results even in complex scenarios involving a mixture of
hybrid soft bodies, rigid bodies, and friction contacts. In
the open loop control analysis, it becomes clear that the
simulator doesn’t perfectly model the real dynamics; how-
ever, it remains in close performance to the real snake.
Our next step is now apply a control trained and tested in
simulation on the real snake. The transfer from simulation to
reality, while still maintaining stability, can also be facilitated
by domain randomization techniques [20]. We demonstrated
the use of GPU in accelerating high-fidelity simulation for
soft robots and present a framework that can generalize to
other soft robotic systems. Our future research is to develop
learning-based control to train fast and stable snake gaits
in a range of terrains, as well as obstacle-aided navigation,
and learning specific motion primitives from demonstration
[31, 32]. Another step is also study the model different types
of soft actuators such as PneuNet [2], and plan to publish
data for our snake model to enable an open platform for
experimentation and improvement.
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