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Abstract It is important to investigate object perception for classification or recog-
nition based on touch sensing, especially when robots are operating in darkness or
the objects are difficult to capture by vision sensors. In this work, we present a new
form of continuum manipulator equipped with sparse touch sensing, validate the
effectiveness of automatic generation of the touch-based continuum wraps, and the
effectiveness of object classification based on the continuum wraps. Using the in-
direct object shape information encoded in the robot shape, we demonstrate that a
classifier trained from the simulated continuum wraps is transferable to identify the
real world objects with real continuum wraps.

Key words: Continuum manipulation, tactile sensing, object perception.

1 Introduction

In order to broaden the real-world application of robotics, the importance of advanc-
ing the capability of robotic manipulation is unquestionable. Most of the existing
research in robotic manipulation assumes that the target object is known or visi-
ble, or can be made visible by adding a light source. However, in many real-world
scenarios, such as underwater or in a smoke-filled room (in a building on fire), a tar-
get object may not be made visible. Therefore, it is necessary to investigate robotic
manipulation based on other sensing modalities.

Tactile or force sensing can be very useful in providing more information about
surrounding objects. Indeed, there is recent research on using tactile sensing for ob-
ject recognition [1], exploration and manipulation [2, 3, 4], and shape estimation
[5, 6]. Touch sensors are usually put on the finger tips of the grippers, which are
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used to touch a target object to collect contact points. Object recognition is achieved
solely based on the collected contact points in [1] or in combination with visual per-
ception [7]. Such touch-based perception is especially useful for perceiving trans-
parent objects, which can be missed by visual sensing.

Continuum manipulators are more flexible for manipulating objects of a wide
range of shapes and sizes in very cluttered environments due to their compliant
and soft nature. In particular, a continuum manipulator can get into a small hole
to fetch an object that a conventional, articulated manipulator cannot [8]. Since it
is often dark in such a hole and difficult to bring in an extra light source, touch-
based continuum manipulation is most desirable. If the target object is not visible,
then object perception (i.e., classification and/or recognition) is also needed from
touch-based continuum manipulation.

In our recent work [9], we introduced a shape-based approach for object classi-
fication and recognition through continuum manipulation. The main idea is to use
the continuum robot as a tool to indirectly “measure” the object shape. That is, the
shape of a continuum arm during whole-arm wraps of a target object, which can be
transparent (and thus not visible), is used to indirectly characterize the shape of the
object and this information is used for classification and recognition. For an object
of any shape, a continuum wrap is generated automatically by a touch-based ap-
proach. However, the work is tested only in simulation with the assumption that the
continuum arm is covered by tactile sensors. In reality, existing continuum manip-
ulators are often not equipped with tactile sensors. One difficulty is that the body
of the robot is deformable. A kinematics-based contact detection and localization
approach for continuum robots is presented in [10], for which an external tracking
system is required but may not always be available in real-world scenarios.

In this paper, we study touch-based identification of object categories using a new
form of continuum manipulator consisting of origami-based modules [11] and tac-
tile sensors attached at each section. Using these new manipulators with sparse tac-
tile sensing, we aim to achieve touch-based wrapping of objects and experimentally
validate the following conjecture: the shape-based classifier introduced in [9] and
trained in simulation can be readily transferred to classifying real objects with real
touch-based continuum manipulation. We envision the robot to be used in a search
and rescue scenario where it could be exposed to low-light environment hence could
benefit from the touch-based manipulation.

2 Technical Approach

We next explain the manipulators we built for this study, sensors, and the touch-
based motion planning strategy for generating continuum wraps, and the classifica-
tion method of unknown objects.
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2.1 Manipulators and Sensors

The continuum manipulators we built for this study consist of multiple origami con-
tinuum modules connected in series. Each continuum module contains a foldable
origami body, three brushed DC micro-motors with pulley systems, and a controller
board that offers on-board sensory measurements, feedback control, and module-
to-module communication. The foldable body is made out of Polyethylene tereph-
thalate (PET) films and constructed based on the Yoshimura crease pattern. This
unique tubular structure with a diameter of 7 cm is capable of bending in two direc-
tions and extending/retracting, while maintaining its structure and resisting torsion.
The foldable structure is connected to an acrylic plate on the top and to the PCB on
the bottom where the motors are secured. Three nylon cables secured to the motor
shafts and spanning the length of the structure along the edges are used to drive the
segment. Each motor is equipped with a magnetic encoder for position control.

We built two continuum manipulators for this study. Fig. 1(a) shows the 3-section
manipulator used in the experiments with planar wraps, and each section has an
active white module with motors on it and a passive green foldable body to expand
the robot workspace. Improved from the 3-section manipulator, Fig. 1(b) shows
the 4-section manipulator used for generating spatial wraps benefiting to its more
compact and lightweight modules and larger touch sensor contact areas.

Each section is characterized using three parameters (s, κ , φ ), where s is the
section length, κ is the curvature, and φ is the orientation angle [8, 11]. Using the
inverse kinematics of a continuum section developed in [11], we can then find the
required cable lengths (l1, l2, l3), that will shape the module into the desired config-
uration (sd ,θd ,φd). The cable lengths are converted into encoder positions, which
are then sent to the low-level controller as reference signals.

We constructed the touch sensors acting as bumper switches using two copper
sheets adhered onto a parallel plate structure made out of the same material used for
the origami collapsible body. One copper sheet is connected to the control board’s
digital I/O pin while the other is connected to ground reference. When the copper
sheets touch each other due to depression of the structure, an electrical circuit is
completed hence signaling a touch on the continuum section. For each continuum
section we place the touch sensor at the module and sandwiched between consecu-
tive modules as shown in Fig. 1.

2.2 Touch-based Continuum Wrapping

A general touch-based motion planning strategy is introduced in [9] for a continuum
manipulator to progressively generate wraps around an object under the guidance
of the contacts made along the way without knowing the object model. Starting
from the initial configuration, the robot motion alternates between the enclosing
motion step to make contacts with the object, and the advancing motion step to move
forward towards wrapping around the object, until a wrap is formed or no further
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Fig. 1 An object (a transparent water bottle) was placed near the base of arms for manipulation:
(a) a touch sensor was mounted in the middle of each origami module in a 3-section arm, (b) a
touch sensor was mounted at the distal end of each module in a 4-section arm. The diameter of the
continuum section is 7 cm. (c) A list of objects used in the experiments.

motion is feasible due to the physical limits of the manipulator. Such continuum
wraps can be efficiently generated within hundreds of milliseconds (time of planning
and collision checking combined) in simulation [9].

To achieve an advancing motion step, as described in [9], contact localization
and estimation of the tangential and normal directions of the local contact patches
are required; whereas, we relax this requirement in this paper through extrapolat-
ing the robot section endpoints based on their local frames. Therefore, our planner
only needs to know whether each manipulator section is in contact or not from the
tactile sensing to plan the next move, which makes it more effective to guide the
manipulator hardware to achieve touch-based continuum wraps.

2.3 Classification of Unknown Objects

As introduced in Section 1, we aim to experimentally validate a shape-based classi-
fier using continuum wraps [9]. The shape of the continuum robot wrapping around
an object is described by a chord histogram descriptor, which approximates the robot
shape using many 3D chords and statistically captures its shape based on the chord
parameters. We first trained a linear SVM classifier in simulation using wraps gen-
erated around the simulated objects and next applied the trained model to classify
the real-world objects using real-world wraps. The objects in simulation were scaled
to roughly match the dimensions of the real-world objects.
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3 Experimental Results with Planar Wraps

In our experiments with planar wraps, we used the 3-section manipulator as shown
in Fig. 1(a). The robot manipulator is initially set at a straight-line configuration
with full contraction, and the testing object is placed near the arm base. For each
section, s ∈ [0.085,0.145](m), κ ∈ [−10.69,10.69](1/m), and φ ∈ [−π,π].

A linear SVM classifier is trained in simulation using wraps from 10 water bot-
tles, 10 boxes, and 6 teapots. For each object one wrap was generated. Fig. 2 shows
a few planar continuum wraps around the objects in simulation. We next conducted
classification of three different real-world objects: a teapot, a water bottle, and a
card box, through real-world continuum wraps.

Fig. 2 A few examples of the planar continuum wraps generated on different objects in simulation.
The simulated arm has 3 sections and each section is colored in white for the first half and in green
for the second half.

The attached video shows the wrapping process of the real-world objects, and
Fig. 3 shows a few motion snapshots. Note that the goal of such wraps is to encode
the shape of an unknown object into the shape of the manipulator, as opposed to
achieving tight grasps of objects with known models [8]. Therefore, the wraps do
not need to be enclosing.

The final robot configurations commanded by the planner were used for clas-
sification. Table 1 summarizes object and wrap information and the classification
results. It can be seen that the classifier learned solely from simulation is already
effective in classifying the real-world objects, as the probabilities of correct classi-
fication are more than two times higher than that of a random guess (about 0.33).
However, the box was mis-classified to be a bottle because the contact on section
1, which was closest to the base, was missed by the sensor, and therefore the plan-
ner kept commanding section 1 to bend more while it was actually stopped by the
contact. Since the curvature of section 1 is a distinctive feature for classification as
shown in Fig. 3, the classifier with the inaccurate data of a larger curvature resulted
in the misclassification.

4 Experimental Results with Spatial Wraps

We use the 4-section robot arm (Fig. 1(b)) to conduct spatial continuum wraps
around the objects to collect spatial shape information. The arm sections of this
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Fig. 3 The motion snapshots of the continuum wraps generated on the real objects. The rightmost
sub-figure in each row shows the final wrapping configuration.

Table 1 Object dimension, number of intermediate configurations to generate the wraps, SVM
prediction and its probability using 1 planar wrap for each object.

Object dimension(cm) # of configurations SVM Prediction Probability
bottle 8 × 8 × 24 59 bottle 0.81
box 27 × 16 × 26 61 bottle 0.83

teapot 24 × 18 × 21 42 teapot 0.71

robot are more compact (rather than having two modules connected as one robot
section) and lightweight, which makes it more suitable for spatial wraps. It also
overcame the problems of missed contacts with increased contact areas of the touch
sensors. Different wraps covering different areas on the objects were conducted to
collect object spatial shape information. The 3D chords generated from different
wraps are accumulated into one histogram as an overall representation of the object
shape. We next explain how the robot arm is lifted to conduct spatial wraps and
present the object classification results.

4.1 Robot Arm Lifting

The arm is lifted up by keeping the first module of the robot at a certain configuration
during the experiment and then changed when switching to other wrapping planes.
See Fig. 5(b) for such examples when the robot arm is lifted up. The benefit of
having this additional module is that the other modules (section 2, 3 and 4) can
be fully used for generating the wraps, and they only need to undergo less strain
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and stress when wrapping around the objects. Alternatively, the modules could be
mounted vertically to minimize the effect of gravity; however this configuration
cannot always be possible in a real life scenario, hence we decided to proceed with
the former.

(a) bottles (b) boxes (c) teapots

Fig. 4 The spatial wraps in simulation. Each row in each subfigure is the three wraps around the
same object. The simulated arm has 3 sections and each section is colored in white for the first half
and in green for the second half.

4.2 Classification Results

We trained a linear SVM classifier using the same set of training objects used in
section 3, and the shape of each object was captured using 3 wraps. Fig. 4 shows the
wraps around the training objects generated in simulation. Fig. 5 shows examples
of such planar and spatial wraps around the real world objects. For testing dataset,
we considered 3 object categories and 3 objects from each category (Fig. 1(c)).

The attached video shows the motion process of the continuum wraps. As men-
tioned earlier, such wraps are the result of local motion generation, and they are
just used to encode the object shape onto the robot arm shape. Therefore, some (for
instance the wraps around the boxes) may only locally conform the robot shape to
the object shape and achieve partial wrapping of the object.

We noticed that the robot final wrapping configurations deviate from the robot
motion commands sent by the motion planner (major cause for the mis-classification
of the box in section 3). There are two main reasons. First, our robot arms currently
do not have the proprioceptive sensors to achieve precise closed-loop control. Sec-
ond, some contacts may be missed by the current sparse touch sensing on our robot
arms. Therefore, in order to more precisely identify the final robot shape, we used
an external vision tracking system to identify the robot final configuration when
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Fig. 5 The motion snapshots of (a) planar and (b) spatial continuum wraps around the bottle,
where the top and bottom rows show the motion of the same wrap from two view angles respec-
tively, (c) final configurations for the remaining objects with planar wraps, (d) spatial wrap final
configurations.

the wrapping process is terminated. This wrapping configuration is next used for
generating the 3D chords and conducting the final object category classification.

Table 2 summarizes the objects used, the average number of robot configurations
to generate the wraps, and the SVM prediction results. Overall, the classifier was
able to correctly recognize 2 bottles, 3 boxes, and 2 teapots. The boxes are easier to
be correctly identified since the robot arm conforms to the side surfaces of the boxes
and therefore has distinctive straight sections in contact. The wraps of the bottles and
the teapots typically have more curved robot sections but differ in lengths due to
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their dimensions. The confusion of classifying the bottles and the teapots is because
sometimes the handles of the teapots (more distinctive features) are not captured.
This can be improved by using longer robot sections and more dense touch sensing.

Table 2 Object dimension, average number of intermediate configurations to generate one wrap,
SVM prediction and its probability using 3 spatial wraps for each object.

Object dimension(cm) avg. # of config. SVM Prediction Probability
bottle1 8 × 8 × 24 45 bottle 0.52
bottle2 9 × 9 × 21 43 teapot 0.56
bottle3 8 × 8 × 21 40 bottle 0.51
box1 27 × 16 × 26 12 box 0.74
box2 25 × 21 × 17 10 box 0.71
box3 27 × 10 × 18 15 box 0.78

teapot1 24 × 18 × 21 36 teapot 0.46
teapot2 21 × 15 × 21 40 teapot 0.51
teapot3 22 × 16 × 16 38 bottle 0.51

5 Experimental Insights

Our results have demonstrated that the shape-based classifier trained solely from
simulation is able to generalize to real-world objects. This confirms our two key
insights. First, because object classification is based on the shapes of the continuum
arm wrapping around the objects and not the shapes of the objects directly, the clas-
sifier has the advantage of avoiding direct sensing and perception of the shape of
an unknown target object as well as the associated limitations (such as low object
visibility) and all the sensing uncertainties involved that can negatively affect clas-
sification accuracy. Second, the continuum wraps generated on objects in the same
category have similar shapes, which are captured by the intrinsic parameters of the
continuum arm, no matter if the objects wrapped are virtual or real.

Since conducting many real-world continuum wraps can be time-consuming, it is
significant that the classifier trained purely in simulation showed considerable effec-
tiveness in classifying real objects. This could make classifier training more efficient
and feasible for classifying a large number of categories of many real objects from
touch-based continuum wrapping.

6 Future Improvement

The overall system can be improved in multiple ways for better results and robust-
ness. First, soft modules with longer length and more dense touch sensing can help
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better capture the unique features of the object shapes, for instance, the handles
of the teapots. Moreover, more dense touch sensing can also help reduce the cases
where the motion planner kept curving the robot sections while the actual contacts
are blocking the robot motion. Second, more sophisticated gravity compensation
should be considered in order to better lift up the robot arm and form spatial wraps
around different areas on the objects. Third, since the final robot configuration is the
result of both desired motion commands and the contacts with the object, the final
shape of the robot can be better identified by equipping robots with proprioceptive
sensors and feedback control rather than relying on an external tracking system.

The manipulators we built for this study are for object perception purposes and
hence have limited payloads. Once the unknown objects are recognized via touch
wraps, force-closure continuum graspings can be generated for further manipulation
of the objects using the algorithms in [8]. We would also like to enable handling
heavy objects by further improving the robot payloads.
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