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We present a novel approach to achieve decentralized dis-
tribution of forces in a multi-robot system. In this approach,
each robot in the group relies on the behavior of a coopera-
tive virtual teammate that is defined independent of the pop-
ulation and formation of the real team. Consequently, such
formulation eliminates the need for inter-agent communica-
tions or leader-follower architectures. In particular, effec-
tiveness of the method is studied in a collective manipulation
problem where the objective is to control the position and
orientation of a body in time. To experimentally validate the
performance of the proposed method, a new swarm agent, ∆ρ

(Delta-Rho) is introduced. A multi-robot system, consisting
of five ∆ρ agents is then utilized as the experimental setup.
The obtained results are also compared with a norm-optimal
centralized controller by quantitative metrics. Experimental
results prove the performance of the algorithm in different
tested scenarios and demonstrate a scalable, versatile, and
robust system-level behavior.

1 Introduction
Swarm systems demonstrate global intelligent behav-

ior emerging from local interactions among many simple
agents. One of the frequently observed behaviors in bi-
ological swarm systems is the collective food retrieval, in
which multiple insects (e.g. Eciton Burchellii also known
as Eciton army ants) carry a relatively large prey to their
nest. This observations inspired many researchers [1, 2] to
design novel robotic systems [3]. Unlike frameworks that
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focus on increasing dexterity and intelligence of a single
well-instrumented robot, swarm systems utilize many low-
cost, simple robots to realize complex tasks. Such systems
demonstrate a scalable, flexible, and robust behavior [4] as
a result of being spatially distributed, following simple rules
and having no single point of failure.

This article introduces a decentralized force control al-
gorithm and analyzes its application in collective object ma-
nipulation. The proposed algorithm substitutes the real (and
unknown) group formation with a hypothetical (and known)
formation, which is composed of an agent and its virtual
teammate. Since a single virtual agent can also represent
the effect of assuming multiple virtual agents, this number
would appear as a scaling factor in the force distribution.
Consequently, coordination between each agent and its vir-
tual teammate produces the collective manipulation behav-
ior.

The presented results prove that this imprecise agent-
level assumption yields to successful pose control of the ma-
nipulated object without requiring any inter-agent communi-
cation or leader-follower architecture. Additionally, the pro-
posed method has a number of advantages over current meth-
ods. These advantages include: 1) The implementation of the
algorithm does not require any information about the popu-
lation and formation of the group. Consequently, none of the
agents needs to exchange information with other group mem-
bers; 2) Coordination between the agents is achieved without
relying on a group leader which increases system robustness;
and 3) Modulating local forces exerted on the object (instead
of planning paths and controlling positions of agents) gener-
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Fig. 1. (A) ∆ρ swarm agents. (B) A multi-robot system consisting of five ∆ρ robots as they are manipulating a puzzle piece

ates a degree of mechanical compliance in the overall system
behavior. The proposed algorithm is a fundamental frame-
work that is open to extension with the implementation of
impedance or force control of the manipulated object con-
sidering its interaction with the environment.

Experimental validation of the performance of the pro-
posed algorithm inspired the design and fabrication of a new
robotic platform: ∆ρ. Due to its holonomic locomotion sys-
tem, ∆ρ is capable of moving and applying forces in any pla-
nar direction. ∆ρ is fabricated from interlocking 2-D profiles
created by laser machining, which significantly reduces the
fabrication cost and time. Fig. 1-A illustrates the ∆ρ plat-
forms and Fig. 1-B presents a snapshot of 5 ∆ρ robots as
they are manipulating a puzzle piece to a desired pose.

Stability and convergence of the proposed controller are
analyzed in detail and its scalability, versatility, and robust-
ness are validated through a set of experiments with a custom
multi-robot system. Efficiency and effectiveness of the algo-
rithm are evaluated in a number of experimental scenarios by
quantitative metrics including manipulation time, path effi-
ciency, and velocity profile variations. The calculated metric
values are then compared with a force-optimal centralized
controller [5], where all agents are aware of the group popu-
lation and formation. Theoretical analyses and experimental
results indicate that the presented collective manipulation al-
gorithm offers significant potential for the future of swarm
robotics, towards realizing large-scale, communication-free
swarm missions with applications in search-and-rescue, con-
struction, and warehouse automation.

The rest of the article is organized as follows. Sec-
tion 1.1 presents a brief background and available methods
in the literature that tackle the collective manipulation prob-
lem. Section 2 discusses the mathematical modeling and
derivation of the decentralized controller based on a set of as-
sumptions presented in Section 1.2. Design, fabrication, and
control of the ∆ρ robots are discussed in Section 3. Section 4
covers the details about instrumentation and data acquisition
system, and presents the results of several experiments con-
ducted to evaluate the effectiveness and efficiency of the pro-
posed method. The article is concluded with discussions and
future work in Section 5.

1.1 Related work
In general, several factors could determine the complex-

ity and effectiveness of collective behaviors in swarm sys-
tems. In the case of collective manipulation, these factors
include shape and size of the object, population of the group,
amount of information available to the agents, and their
physical capabilities. These capabilities determine whether
the object can be manipulated using force or form closure
methods.

Some known challenges associated with force closure
are stagnation, coordination of motion, and the effect of the
shape of the transported object. One of the earlier works,
[6] addresses the issue of stagnation and proposes a recovery
mechanism, which utilizes the application of random forces
by either realigning the direction of forces or repositioning
the pushing force.

In form closure approaches, [7] addresses some of the
associated problems by calculating the minimum population
and the group formation which ensures that the relative de-
gree of freedom of the object is zero. A decentralized ap-
proach for confining an object with multiple mobile robots is
studied in [8]. Their proposed algorithm is based on a gradi-
ent descent method for a system with a known object shape
and known relative positions of the agents with respect to the
object. The task of capturing a target is divided into two sub-
tasks of enclosing and grasping. The objective function is
defined to uniformly distribute the agents around the object
by minimizing the angular distance between an agent and its
neighbors around the object.

Regardless of the strategy used for collective manipula-
tion, successful force/motion coordination requires an agree-
ment on the goal position if the goal is not visible to all
agents. This agreement can be obtained either by propagat-
ing the goal location to all agents or relying on group lead-
ers, which are assumed to know the goal location. This ap-
proach requires a consensus strategy in the team as described
in [9, 10]. Based on this method, agents which are aware of
the goal location will move towards it, while other agents try
to minimize their heading error with respect to their neigh-
bors. Another consensus approach is studied in [11] where
some robots are aware of the location of the target and the
others (referred to as blind agents) are not. In this method,
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the robots that are connected to the object are treated as parts
of the object; thus allowing the other agents to attach to them.
If a robot is not blind, it can simply head towards the goal lo-
cation and set its speed to the maximum value. Blind robots
can perceive forces and consequently determine the desired
orientation of and move in that direction.

Consensus can also be attained via physical feedback
from the object. This approach is studied in [12, 13], where
force feedback from the object is used to adjust the direc-
tion of forces applied by the follower agents to follow the
direction of a leader. Although consensus based algorithms
work well in coordinating the movement of agents, the im-
plementation of such methods on robotic platforms requires
communication channels or sensory equipment, which may
reduce the applicability of the methods in real life appli-
cations. In addition, the heterogeneous nature of leader-
follower schemes decrease the robustness of the system as
the group members rely on certain individuals to coordinate
their motion. In contrast to having partial goal visibility,
some studies [6, 14] assume that the goal point is visible to
all the agents. Therefore, robots only need to move the ob-
ject in a defined direction, while the orientation of the object
is not controlled.

In addition, current approaches demand at least one type
of information exchange between robotic agents to provide a
successful coordination [15] or full control on position and
orientation of the object throughout the manipulation pro-
cess. This exchange of information can be either in a direct
communication form, which can affect the scalability of the
system, or physical feedback such as forces or motion, which
may reduce system robustness. In this regard, [16] proposed
an algorithm to reduce the communication requirements of
a swarm system. Their proposed algorithm is based on po-
sition control of robots, where a global error signal is sent
for all agents to regulate. Although this algorithm was able
to manipulate objects to a desired position and orientation,
it is subject to various limitations. The first drawback of the
approach is that the system is not controllable in an obstacle-
free workspace due to the reduced rank of the global control-
lability matrix. The other drawbacks include time complex-
ity, scalability, and the inability to keep force or form closure
around the object while following a trajectory.

1.2 Assumptions
In contrast to the related work, our algorithm does not

explicitly account for closure around the object, but relies
on robots being rigidly connected to the object with a non-
prehensile end-effector that allows the robot to rotate freely
around the connection point. The robots do not know the
shape or mass of the object, or the group population or con-
figuration. We do not utilize a leader-follower architecture,
but assume that all agents are aware of the target position
and orientation (pose) of the object. In addition, we assume
that each agent can monitor its own pose and the pose of the
object. Experimentally, we use a motion capture system to
relay this information to each agent.

2 Problem Formulation
Although the presented algorithm is extensible to 3-D

space, this manuscript focuses on the formulation and ex-
perimental validation of our method for a multi-robot sys-
tem constrained to planar motion. The vector and coordi-
nate frame notations used in this article are adopted form
[17]. Based on these notations, a transformation A from
coordinate frame {i} to coordinate frame { j} is denoted
by j

i A. Similarly, iv illustrates vector v defined in coor-
dinate frame {i}. It is assumed that the coordinate frame
{O} is attached to the object center of mass and the vec-
tor Ori ∈ R2 defines the attachment point of agent i mea-
sured from the object center of mass in {O}. Assuming
that the robots are only able to apply forces but not mo-
ments, vector O fi ∈ R2 defines the force applied by the ith

agent in coordinate frame {O}. The error vector, Oe ∈ R3,
is composed of linear and angular differences between de-
sired and current object positions in {O} and defined as
Oe = (xd− xo)

O î+(yd− yo)
O ĵ+(θd−θo)

Ok̂. Equation (1)
describes the differential equations of motion for an object
with mass m ∈ R and mass moment of inertia I ∈ R in the
body-fixed (non-inertial) reference frame {O}. The vectors
Ovo ∈ R2 and O fi ∈ R2 represent the velocity of the object
and the forces applied by each agent, respectively.

[
m(Ov̇o + θ̇o

Ok̂×O vo)

Iθ̈o
Ok̂

]
=

N

∑
i=1

[ O fi
Ori×O fi

]
. (1)

In the above equation, N ∈ N represents the total number of
agents that are involved in the task. Unless noted otherwise,
throughout the rest of this article, all the vectors are defined
in coordinate frame {O}. Thus, for the sake of brevity, the
superscript O is dropped from vector names in the following
sections. The right side of Eqn.(1) can be reformulated as:

N

∑
i=1

[
fi

ri× fi

]
= J
[

f T
1 , f T

2 , · · · , f T
N
]T

= F, (2)

where the matrix J ∈R3×2N is the full Jacobian of the system
[17, 18] (note that, in some context, based on the definition
of the joint and work spaces, the matrix J is referred to as
the grasp matrix [19]). In this equation rxi ∈ R and ryi ∈ R
are the x and y components of the ri vector respectively. Full
system Jacobian is written explicitly as:

J =

 1 0 1 0 · · · 1 0
0 1 0 1 · · · 0 1
−ry1 rx1 −ry2 rx2 · · · −ryN rxN

 . (3)

Derivation of the decentralized controller is inspired
from a centralized controller that utilizes the full Jacobian
of the system and Moore-Penrose pseudoinverse [20] to ef-
fectively distribute the control action among the team agents.
The details on formulation of the decentralized controller are

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Dynamic Systems, Measurement and Control. Received December 30, 2016; 
Accepted manuscript posted March 21, 2018. doi:10.1115/1.4039669 
Copyright (c) 2018 by ASME

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 03/22/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



To prevent side collisions with the

object, a proportional controller was

used to correct the attitude error of the

robots.

C

B

Robots have no information

about the population and

formation of the team. Each robot

only coordinates with one virtual

team mate, located at its mirror

position with respect to the CoM

of the object.

A

Virtual agent 

Fig. 2. (A) System virtual configuration from each robots view. The virtual configuration for each robot consists of the
robots itself and a virtual teammate located at its mirror location with respect to the object center of mass. (B) Utilization of
the virtual agents eliminates the need for inter-agent communications and enables each robot to calculate its force based on
the error vector of the object. The traction forces of the wheels are then computed using the Jacobian of the robotic platform,
JA. (C) Graphical illustration of the experiment with 200 g payload. As observed from the figure, robots successfully move
the object to the desired position and orientation as they are minimizing their attitude error ea with respect to the object

discussed in what follows. Throughout the rest of this ar-
ticle the terms “pseudoinverse” and “Moore-Penrose pseu-
doinverse” are used interchangeably.

2.1 Decentralized Algorithm

In the derivation of the decentralized controller, it is as-
sumed that each agent only cooperates with a virtual agent
that is located at an arbitrary position around the object. If
the virtual agent simulates the effect of the rest of the team,
the response of the decentralized system will converge to the
centralized approach. We presented the details of derivation,
convergence proofs, and numerical validation of this claim
in [5] over simulation results. As noted in [5], although vir-
tual agents may not necessarily represent the effect of the
rest of the team, they provide a means to distribute the force
vector F among the agents. Thus, the problem reduces to
defining the positions of virtual agents such that the trans-
formation T : φ(e) 7→ F remains positive definite. A possi-
ble solution that guarantees positive definiteness of T for a
physical system (agents with finite dimensions) is to define
the location of the virtual agents at the mirror positions of
the team members with respect to the object center of mass
as shown in Fig.2-A. Note that the mirror position is desir-
able because it significantly simplifies the derivations and it
can be replaced with any other position as long as it results in
a positive definite T matrix. Using this approach, each agent

can assume the following local Jacobian matrix Ji ∈ R3×4.

Ji =

 1 0 1 0
0 1 0 1
−ryi rxi ryi −rxi

 . (4)

The manipulation problem is formulated such that each
agent only knows a minimal set of information: the point of
attachment to the object ri, and the error vector e [12]. Thus,
employing Ji in deriving the local forces eliminates inquir-
ing information about the real team composition. Finally,
by substituting the feedback control law φ(e) with a PD con-
trol function, the complete decentralized control law for each
agent can be written as:

fi = Ji
+

φ(e) = Ji
+(Kpe+Kd ė), (5)

where Ji
+ is the Moore-Penrose pseudoinverse of the local

Jacobian matrix Ji as shown in Fig. 2-B. This formulation
results in the required planar forces by each agent to collec-
tively manipulate the object to a desired location and orienta-
tion. These forces are defined in the object coordinate frame
{O} without considering geometries of the robots surround-
ing the object.

Imposed physical constraints from a real-world imple-
mentation of the algorithm demands local control on the ori-
entation of the robots to eliminate possible collisions. These
constraints include curvature, concavity and convexity of the
object shape at the points of attachment, object dimensions,
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and population of the team, which affect the range of attain-
able angles of attachment. Thus, to avoid collisions, in ad-
dition to providing the desired forces, robots need to control
their orientations with respect to the object.

The controller formulation above determines linear pla-
nar force vectors at the attachment points to the object. Since
applying a planar force vector requires only two degrees of
freedom, the extra degree of freedom provided by the holo-
nomic locomotion system of ∆ρ is utilized to control the rel-
ative angle between the robot and the object as a secondary
goal as described in Section 3. The effect of the controller
used to correct the orientation of the robots with respect to
the object is depicted in Fig. 2-C extracted from experimen-
tal data, where agents work to remain in a constant relative
orientation with respect to the object through the course of
manipulation.

2.2 Stability and Convergence Analysis
The objective is to define all the components of fi such

that the norm of the error vector converges to B(ε), ε > 0, in
finite time; where B(ε) = {e ∈ R3 : ‖e‖< ε}. This can be
achieved by equating F =

[
Fx, Fy, Mz

]T to the output of a
control function, φ(e). Although any linear or nonlinear con-
troller can be utilized as the control function, considering dy-
namics of the system, φ(e) is simply set to be a proportional-
derivative (PD) controller. The output of the control function
φ(e) can be mapped into agent forces by solving Eqn.(2) for
fi. Since J is not a square matrix, there is no unique solution
for the corresponding system of equations. Thus, Moore-
Penrose pseudoinverse is utilized to obtain a minimum Eu-
clidean norm solution for fi. The complete centralized con-
troller is formulated as:

[
f T
1 , · · · , f T

N
]T

= J+φ(e) = J+(Kpe+Kd ė), (6)

where J+ is the Moore-Penrose pseudoinverse of the Jaco-
bian matrix J. The resultant applied force to the object cen-
ter of mass for each controller can be obtained by substitut-
ing the forces obtained using the corresponding control equa-
tions into Eqn.(2). For the case of the centralized approach
this substitution yields:

N

∑
i=1

[
fi

ri× fi

]
= J
[

f T
1 · · · f T

N
]T

= J[J+φ(e)]. (7)

As observed in Eqn.(3), the rows of the Jacobian ma-
trix J are linearly independent. Thus multiplication of J by
its pseudo-inverse results in an identity matrix and Eqn.(7)
reduces to:

N

∑
i=1

[
fi

ri× fi

]
= φ(e). (8)

Consequently, convergence and stability of the centralized
controller directly depends on the behavior of the control

function φ(e). If φ(e) guarantees system stability, the cen-
tralized controller will also be stable. Moreover, the system
will demonstrate the same response as if it is directly con-
trolled by φ(e).

Following a similar approach, we can find the total force
applied to the object center of mass for the decentralized con-
troller by substituting Eqn. (5) into Eqn.(2) that leads to

N

∑
i=1

[
fi

ri× fi

]
= J
[

f T
1 , · · · , f T

N
]T

= J
[
K1, · · · , KN

]T
φ(e),

(9)
where Ki is the first two rows of Ji

+ and defined as:

Ki =
1

2ℜi

[
ki11 ki12 ki13

ki21 ki22 ki23

]
, (10)

ℜi = (axi− rxi)
2 +(ayi− ryi)

2,
ki11 = ℜi +ayi

2− ryi
2,

ki12 =−(axi + rxi)(ayi− ryi),
ki13 = 2(ayi− ryi),
ki21 =−(axi− rxi)(ayi + ryi),
ki22 = ℜi +axi

2− rxi
2,

ki23 =−2(axi− rxi).

In the above equation, ai = [axi, ayi] is the location of the
virtual agent i that is defined in the object coordinate frame
{O}. In general,

[
K1, K2, · · · , KN

]T will not be equal to the
pseudoinverse of J and the right hand side of Eqn.(9) will
not simply reduce to φ(e). Consequently, the behavior of
the control function φ(e) will be affected by the nature of
the resultant transformation matrix T . This transformation
matrix, which maps the output of the control function to the
forces that are applied to the object center of mass, is defined
as:

T = J
[
K1, K2, · · · , KN

]T
. (11)

If T is positive definite, the inner product between the resul-
tant transformed control actions and the vector φ(e) will be
positive. Thus, a positive definite matrix T preserves the be-
havior of φ(e) and results in a stable mapping between the
control function and the forces applied to the object center of
mass.

Although ai vectors can have any arbitrary values as
long as they yield to a valid T matrix, the formulation pre-
sented in this article assumes that the virtual agent for ith

agent is located at its mirror position with respect to the cen-
ter of mass of the object. Substituting values of ai =−ri into
Eqn.(10) yields:

Ki =
1
2

[
1 0 −ryi/(rxi

2 + ryi
2)

0 1 rxi/(rxi
2 + ryi

2)

]
. (12)

Finally, substituting Ki values into Eqn.(11) yields to
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the transformation matrix T of proposed decentralized algo-
rithm:

T =
1
2


N 0 −

N
∑

i=1
ryi/(rxi

2 + ryi
2)

0 N
N
∑

i=1
rxi/(rxi

2 + ryi
2)

−
N
∑

i=1
ryi

N
∑

i=1
rxi N

 , (13)

and the corresponding eigenvalues of the matrix T are λ =
{N−δ, N, N +δ}, where δ is defined as

δ =

√
N

∑
i=1

ryi

rxi2 + ryi2

N

∑
i=1

ryi +
N

∑
i=1

rxi

rxi2 + ryi2

N

∑
i=1

rxi. (14)

All the eigenvalues of T are positive if and only if
−N < δ < N. Since the perimeter of the object is finite and
bounded, and the physical agents have a finite and nonzero
perimeter, the growth in population of the group causes the
matrix T to approach to a scaled identity matrix. As a re-
sult, all the eigenvalues of T remain greater than zero and
a stable mapping is obtained between φ(e) and and forces
applied to the object center of mass. Moreover, the eigen-
values of T are scaled by the population of the team, N.
Since the Euclidean norm of the real matrix T is equal to
square root of its maximum eigenvalue (‖T‖=

√
N +δ), the

decentralized approach results in larger forces applied to
the object center of mass and consequently a shorter set-
tling time. Also, since the condition number of the T ma-
trix is ratio between its maximum and minimum eigenvalues
(κ(T ) = (N +δ)/(N−δ)), as N approaches to infinity, κ(T )
approaches to 1. Thus, the system performance converges to
the centralized approach for highly populated groups.

In the formation experiments presented in this article,
the robots are located around a circular object. Using this in-
formation, it is possible to further simplify the expression
of δ by substituting rxi = Rcos(θi) and ryi = Rsin(θi) in
Eqn.(14). For an object with a fixed radius R, θi defines
the angle for the attachment point of the ith agent. Finally,
a simpler expression for δ is obtained as:

δ =

√( N

∑
i=1

sin(θi)
)2

+
( N

∑
i=1

cos(θi)
)2

. (15)

Thus, as the agents get closer to each other, the value of δ

will increase which results in a larger norm and condition
number of T . Consequently, the system will have a faster
response with a larger steady-state error.

3 Delta-Rho Robotic Platform
The large population of agents involved in a swarm sys-

tem demands low-cost platforms to serve as team members.

Fig. 3. Description of the parameters used for derivation of
the control equations for robots

Consequently most of the potential robotic swarm agents in-
troduced so far utilize a simple locomotion system. Some of
the common approaches for locomotion system designs in-
cludes: vibration based locomotion [21], differential drives
[22], and two and three degrees of freedom legged locomo-
tion systems [23–25]. Although our earlier work [24] uti-
lized a legged holonomic structure, the legged nature of its
locomotion system cannot provide a continuous force output
capability. To simplify the experimental setup and to focus
on the performance of the algorithm, it is desirable to use a
platform with a continuous force control capability without
the rocking motions caused by discrete phases of legged lo-
comotion. ∆ρ is a small, accessible holonomic drive robot
capable of applying forces in any arbitrary planar direction
parallel to the substrate surface using a non-prehensile end-
effector without utilizing any active arm mechanisms. The
design, control and fabrication details of the ∆ρ robotic plat-
form are discussed in what follows.

3.1 Robot Design and Control
∆ρ is a holonomic mobile robot, which is specifically

designed as a testbed for multi-robot and swarm algorithms.
A 3-wheel holonomic platform serves as the locomotion sys-
tem of the robot which enables motions in any arbitrary pla-
nar direction. Therefore, ∆ρ is capable of applying forces in
any planar direction without utilizing an active arm. Each
robot is identified by a number of infrared reflective markers
that are placed on the top surface of the body. Although the
platform can be equipped with on-board localization sensors,
to eliminate the errors associated with position estimations,
position and orientation of the robots are directly tracked
with an OptiTrack motion capture system.

In what follows, we describe the control formulation for
each robot. The parameters associated with ∆ρ agents are
depicted in Fig. 3. The traction forces of the robot wheels,
τw = [τ1, τ2, τ3]

T ∈ R3, is related to force and moment vec-

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Dynamic Systems, Measurement and Control. Received December 30, 2016; 
Accepted manuscript posted March 21, 2018. doi:10.1115/1.4039669 
Copyright (c) 2018 by ASME

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 03/22/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Fig. 4. An overview of the experimental setup used for vali-
dation of the proposed algorithm

tors at the tip of the end effector, [Tx, Ty,Cz]
T ∈ R3, by

Tx
Ty
Cz

=
3

∑
w=1

 −sin(αw)
cos(αw)

ρwx cos(αw)−ρwy sin(αw)


︸ ︷︷ ︸

JR

τw, (16)

where αw ∈ {π/3, π, −π/3} is the angle between wheel w
and positive Ax axes. Variables ρwx and ρwy in R are the x
and y components of ρ vector measured from the tip of the
end effector to the center of w and JR ∈ R3×3 represents the
robot Jacobian. Finally, the traction force for each wheel of
the robot is calculated by substituting Eqn.(5) for Tx and Ty

and solving τw = J−1
R [Tx, Ty,Cz]

T . To correct the attitude of
the robot with respect to the object, moment Cz is calculated
by applying a proportional controller with gain Ka < 0 ∈ R
to the attitude error, ea ∈ R. Therefore, τw is defined as

τw = J−1
R

[
A
OR[Ω(Kpe+Kd ė)]

Kaea

]
, (17)

where Ω is a matrix composed of the first two rows of Ji
+.

The above equation determines the required traction forces
for each wheel of the robot for a given manipulation force
and attitude error. The traction force for each wheel is then
converted to the required motor torque based on the gear ratio
and diameter of the wheel. For each robot, linear velocity of
the wheel centers is computed using JT

R . Consequently, mo-
tor torques are controlled with an open-loop controller based
on the motor parameters. For a fully contained solution, one
can also use the closed-loop torque control based on motor
current feedback as discussed in [26].

3.2 Fabricated Prototype
The robot structure and wheels are fabricated by CO2

laser machining and assembly of interlocking 2-D profiles
that are cut from 2 mm and 6 mm thick acrylic sheets. On-
board actuators and sensors are controlled by a custom con-

trol board that utilizes an Atmel ATmega1284P microcon-
troller. Two DRV8833 Dual H-Bridge motor drivers are used
to control the input voltage of the three permanent-magnet
DC (PMDC) motors that drive the three holonomic wheels of
the robot. An XBee RF transmitter is connected to the main
control board to allow communication with external devices.
Each of the robots use one 7.4 V 180 mAh 2-cell lithium
polymer battery as their power source. Five fabricated proto-
types are shown in Fig. 1. Each robot weighs 150 g and fits
into a 127×117×50 mm box.

3.3 Experimental setup
The experimental setup consists of up to five ∆ρ robots,

which manipulate objects of various weights in the horizon-
tal plane. To focus the experiments on the performance of
the algorithm, it is assumed that grasping of the object has
already been achieved by the robots. Therefore, finding and
attaching to the object are not discussed in this work. To
ensure a robust physical connection between agents and the
object through the course of experiments, ∆ρ robots are at-
tached to the object by pin joints. Moreover, to eliminate the
errors associated with pose estimation, an Optitrack motion
capture system with four cameras (18 µm accuracy) is used
to detect the position and orientation of the robots and the
object. This information is processed in MATLAB and sent
to the robots over an XBee network. An overview of the ex-
perimental setup is illustrated in Fig. 4. The experiments are
conducted with two circular objects with masses of 100 and
230 g. The average coefficients of static and kinetic friction
measured in different locations of the experimental environ-
ment are 0.44±0.1 and 0.22±0.07, respectively.

4 Results and Discussions
One of the most important features of a swarm system

is to demonstrate scalable, flexible, and robust system-level
functionality [4]. Thus, several experimental scenarios are
designed to study the system-level behavior and evaluate the
efficiency of the proposed algorithm in different conditions.
The experimental scenarios were tested with both decentral-
ized and centralized controllers and responses of both control
strategies are compared and tabulated.

Figure 5 illustrates snapshots of three ∆ρ robots as they
carry a 100 g object to a desired pose, depicted with dashed
white line. The complete explanation of the algorithm, robot
control method and details about ∆ρ platforms are also pre-
sented in [27].

4.1 Scalability
Scalability requires the system to be able to operate with

different group populations. To study this property, we var-
ied the number of agents for manipulating a 230 g object
between fixed start and goal poses. It can be observed from
Fig. 6, the proposed algorithm is able to find similar solutions
with different group populations.

The results of this experiment suggest that increasing the
group population will result in smaller position and orienta-
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t = 0 s t = 1 s t = 2 s t = 3 s
10 cm

Fig. 5. Snapshots of five ∆ρ robots as they are manipulating a 100 g object. The manipulated object is assembled to a virtual
puzzle piece depicted with white dashed line
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Fig. 6. Position and orientation of the object over time (vertical axis) for different group populations N. Path of the object
center of mass is projected on x-y plane (depicted with blue color). Time responses for x and y are plotted in y-t and x-t planes
respectively. The dashed yellow line on x-t and y-t planes illustrate the desired positions along x and y axes, respectively. The
red line represents the location of the goal over time on the x-y plane. The orientation of the object over time is depicted via
the black line parallel to the x axis of the object. The color gradient of the object, varying from cyan to magenta, illustrates
the passage of time.

tion errors and shorter settling times for the system. This is
expected due to an increase in the resultant forces applied
to the object center of mass based on the model presented
in Eqn.(1). This increase in total applied force allows the
system to readily overcome static friction and consequently
reach closer to the goal position. It is also observed that the
settling time for the decentralized controller is smaller than
the centralized controller. This is due to the assumption we
made on the existence of only one virtual agent for each real
agent, which yields larger forces applied by the group. This
phenomenon is proved by noting that the eigenvalues of ma-
trix T in Eqn. (13 ) in Section 2.2 are greater than the eigen-
values of the identity matrix J[J+] (which is equal to 1) for
the centralized controller.

Table 1 presents the average settling times for manipu-
lating the object. Throughout this article, two settling time
metrics are defined as the time elapsed from the start of the
experiment to the time at which the object center of mass
enters and remains within 15% and 5% error bands, respec-
tively. The average steady-state error for centralized and de-
centralized controllers are also presented in Table 1.

In all trials of this experiment, the robots are distributed
uniformly around the object with 72◦ increments. Such for-
mations eliminate any overlap in the locations of virtual
agents with real robots. Therefore, the results presented in
Fig. 6 and Table 1 essentially correspond to worst case sce-
narios of the decentralized controller due to the fact that none
of the virtual agents exactly overlaps with a real robot. We

Table. 1. Settling time and steady-state error for different
group populations N

Settling time

e = 15% e = 5%

N Dec. Cent. Dec. Cent.

2 2.31±0.40 s 2.72±0.48 s 2.79±0.66 s 3.32±0.64 s

3 2.25±0.32 s 2.39±0.44 s 2.70±0.80 s 3.03±0.52 s

4 2.17±0.16 s 2.18±0.24 s 2.57±0.48 s 2.94±0.34 s

5 1.91±0.24 s 2.12±0.30 s 2.28±0.38 s 2.78±0.40 s

Steady-state error

N Dec. Cent.

2 9.1±0.97 mm, 11.4±2.40 ◦ 7.1±0.81 mm, 8.8±1.92 ◦

3 4.3±0.66 mm, 5.7±1.21 ◦ 3.5±0.75 mm, 4.3±0.85 ◦

4 3±0.78 mm, 2.2±0.93 ◦ 2.4±0.74 mm, 1.4±0.68 ◦

5 0.8±0.41 mm, 0.6 ±0.47 ◦ 0.2±0.30 mm, 0.2±0.11 ◦

previously studied this effect in [5] over a set of simula-
tions. In real applications of the algorithm, it is more likely
to have overlaps in more populated swarm systems or even-
numbered groups with a uniform distribution of agents.

Although overlap of the virtual and real agents will not
affect the settling time of the system, it will reduce the
steady-state error. As an example, in an experiment con-
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ducted with four uniformly distributed agents (90◦ incre-
ments), the steady-state error was reduced to 0.4 mm and
1.9◦. In general, the steady-state error for the centralized
controller is smaller than the decentralized one, but as the
group population increases, the decentralized controller re-
sponse approaches that of the centralized method.

4.2 Versatility
Versatility of the system is defined as the ability to find

a feasible solution to the collective manipulation task in re-
sponse to changes in experimental conditions or the environ-
ment. In the current system, versatility was evaluated using
two different scenarios: changes in payload and changes in
group formation. Below, we present the results of the exper-
iments conducted to test both of these scenarios.

4.2.1 Payload
The first scenario aims to test the ability of the system

to manipulate different payloads. In this experiment, the
amount of payload for a system with three ∆ρ robots is in-
creased gradually from 100 g to 600 g through a set of ex-
periments. These payloads correspond to up to 4 times the
weight of each robot. For each of the experiments, position
and orientation of the object and the robots are acquired over
time using an OptiTrack motion capture system. x, y posi-
tions, and the orientation of the object center of mass over
time are displayed in Fig. 7-A. Table 2 presents the settling
time and steady-state error of the system for different pay-
loads. As expected, performance degrades with increasing
payload, while the decentralized controller exhibits similar
performance to the centralized controller (patterns of larger
steady-state error and smaller settling times are maintained).
These results indicate that the settling time and steady-state
error of the system increase with the amount of payload for
both controllers. This is due to the cancellation of control
forces by friction forces experienced by the object. Utilizing
a nonlinear control function, φ(e), may help eliminate this
steady-state error, but this is beyond the scope of this article.

4.2.2 Group Formation
Another possible scenario could happen when the shape

or placement of the object limits accessible attachment points
and consequently robots can not distribute uniformly around
the object.

To explore the performance of the system in such sce-
narios, three different arbitrary formations of three robots
around the object are studied. In the first experiment, agents
are placed with 60◦ increments around the object. In this for-
mation none of the virtual agents overlap with a real agent.
The second experiment uses 80◦ increments between the
robots. Thus, locations of robots are closer to the locations of
the assumed virtual agents. The last experiment studies the
response of the system for uniformly distributed agents (with
120◦ increments) around the object. The results of these ex-
periments are illustrated in Fig. 7-B. As shown in this figure,

Table. 2. Settling time and steady-state error for different
payloads M

Settling time

e = 15% e = 5%

M(Kg) Dec. Cent. Dec. Cent.

0.1 4.27±0.32 s 4.52±0.46 s 5.64±0.49 s 7.06±0.55 s

0.2 5.17±0.51 s 7.03±0.53 s 5.85±0.63 s 7.42±0.79 s

0.3 5.88±0.56 s 7.60±0.72 s 6.92±0.65 s 8.69±1.02 s

0.4 7.01±0.86 s >10 s >10 s >10 s

0.5 >10 s >10 s >10 s >10 s

0.6 >10 s >10 s >10 s >10 s

Steady-state error

M (Kg) Dec. Cent.

0.1 2.2±0.53 mm, 1.97±0.54 ◦ 1.6±0.34 mm, 0.15± 0.11◦

0.2 4.5±0.68 mm, 2.18±1.75 ◦ 3.7±0.72 mm, 1.73± 0.48◦

0.3 9.6±0.84 mm, 6.06±2.62 ◦ 8.4±5.50 mm, 4.26±1.87 ◦

0.4 64±10.40 mm, 7.31±2.93 ◦ 48±0.90 mm, 6.18±2.91 ◦

0.5 193±14.83 mm, 41.58±20.10 ◦ 176±21.77 mm, 37.62±24.58 ◦

0.6 251±21.96 mm,46.38±27.04 ◦ 237±23.60 mm, 42.6±35.90 ◦

robots successfully move a 100 g object to the desired loca-
tion and orientation for all of the considered formations. Ta-
ble 3 presents the settling times and steady-state errors for the
studied group formation. As observed from these results, the
settling time and steady-state error of the system decreases as
the distribution of the robots converges to a uniform configu-
ration. This is due to the fact that, for uniform configurations
the assumed locations of the virtual agents represents the ef-
fect of the real robots more effectively. A similar situation is
observed as the group population increases and the probabil-
ity of coincidence between real and virtual agents becomes
higher. This experimental observation verifies our simulation
results obtained in [5]. On the other hand, as the attachment
points of the agents to the object get closer to each other, the
proposed system exhibits a shorter settling time with a larger
steady-state error. This is due to an increase in the norm and
condition number of the T matrix as described in Section 2.2.

4.3 Robustness
Robustness of the system is characterized by several fac-

tors that include [28, 29]: redundancy, decentralized coordi-
nation, and structural simplicity of the agents. Redundancy
is defined as the capability of the multi-robot system to ac-
complish the assigned task despite individual failures. De-
centralized coordination corresponds to a system property,
in which a partial failure will not prevent the system from
achieving the goal. This property is not maintained in sys-
tems that rely on a leader for coordination since failing the
leader (or failing to assign a replacement) will result in fail-
ure of the whole group. Simplicity of the agents is another
factor that affects the robustness of the system.

The experiments presented in this section are designed
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Fig. 7. The x, y positions and the orientation of the object center of mass over time for (A) different payloads ranging from
100 g (cyan) to 600 g (magenta) and (B) different group formations (indicated by different colors). The red line represents
the desired object pose

Table. 3. Settling time and steady-state error for different
group formations

Settling time

e = 15% e = 5%

Increments Dec. Cent. Dec. Cent.

60 ◦ 3.21±0.20 s 3.31±0.31 s 3.33±0.62 s 3.58±0.73 s

80 ◦ 3.38±0.28 s 3.53±0.34 s 3.75±0.48 s 3.97±0.50 s

120◦ 3.52±0.25 s 3.63±0.35 s 4.13±0.43 s 4.29±0.47 s

Steady-state error

Increments Dec. Cent.

60 ◦ 8.35±1.65 mm, 7.95±3.73 ◦ 4.97±1.61 mm, 6.62±3.43 ◦

80 ◦ 3.93±0.95 mm, 6.48±2.80 ◦ 2.82±0.86 mm, 5.06±3.14 ◦

120◦ 1.65±1.05 mm, 5.54±1.53 ◦ 1.33±1.03 mm, 4.79±1.86 ◦

to investigate the system robustness through redundancy. In
this regard, the agents are intentionally programmed to fail
at a certain point during each experiment. Figure 8 illus-
trates the results of failing 3 different sets of 2 robots in a
group consisting of 5 agents in total. In each trial, 2 differ-
ent robots are programmed to not function at time equal to
1 second (a number arbitrarily picked without loss of gen-
erality to ensure that failures occur during runtime and be-
fore the completion of the task). As depicted in this figure,
the system can successfully continue towards minimization
of the position error, but the resulting steady-state errors are
comparably larger due to an increase in frictional forces. Be-
cause of the arm mechanism that robots use to manipulate the
object, inactive (failed) agents remain attached to the object
through the manipulation phase. This introduces and added
weight and friction to the manipulated object. As long as
the total payload (including the object and the failed robots)

x [mm]

y
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m
]

Failing 2 and 4, 
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Fig. 8. System configuration for robustness test. Initial robot
positions around the object are represented using small gray
circles. The desired pose of the object is depicted using
dashed red line. In each trial, different selection of the robots
involved in the manipulation task are set to be inactive after
1 second, simulating partial power failure. The steady state
pose error values for each trial implies the ability of the team
to accomplish the task despite failure of 40% of the team

is less than the maximum payload capacity for the reminder
of the team, robots can successfully manipulate the object to
the goal position. A similar behavior is observed in Fig. 7-
A where the response of the system for varying payload is
studied. Moreover, since φ(e) is a PD controller, the steady-
state error, ess, is implicitly defined by T Kp(ess) = Ffriction.
As discussed in [5], in the absence of external disturbances,
the object should follow a straight path connecting the initial
and final positions. However, the observed variations from
the straight path, illustrated in Fig. 8, are due to the the fric-
tion forces introduced by the failed agents.

4.4 Efficiency
In this article, the term “efficiency” of a system is used

to define a metric, which measures the ability of the system
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to make the best use of the provided resources for generating
the desired output. Although this definition does not pre-
cisely match with the classical definition of efficiency in a
mechanical system, it allows us to quantitatively capture the
advantages and disadvantages of the proposed algorithm.

In addition to manipulation time which was discussed
for all of the experiments so far, and is a metric of time ef-
ficiency, other metrics could be used to evaluate the energy
efficiency of the proposed collective manipulation algorithm.
These measures are: 1) The smoothness of the velocity pro-
file of the object, which is used to provide information about
the force coordination between agents. In a system with
similar frictional effects and coefficients, the one that has a
smoother velocity profile is the one that has better coordi-
nation between its agents; and 2) The path efficiency of the
algorithm, which is defined as the variation from the opti-
mal path between the start and goal points. Since the experi-
ments are conducted in an obstacle-free environment (to hold
the focus on the performance of the controller), the optimal
path is the straight line that connects the start and goal points
(Euclidean shortest path).

4.4.1 Object velocity profile
The velocity profiles of the object during manipulation

have been used in [2] as a method to determine the coordina-
tion level of the system. As suggested in [2], the difference
between the prey (or the object being manipulated) speed and
the maximum achievable speed during manipulation can be
used to define the coordination level between the agents. The
time period in which the prey is carried at the maximum ve-
locity is defined as the period of maintaining coordination.

Since both centralized and decentralized controllers are
distributing a PD control law among the agents, the output
of φ(e) is directly related to the distance from the goal po-
sition. In a physical system, the output of φ(e) will be satu-
rated by power limitations of the agents. Thus, the response
of the system is expected to converge into three phases of: 1)
maximum positive acceleration, 2) an approach phase with
a constant velocity, and 3) a final convergence to the desired
point. This response type is observable in all the time re-
sponses presented in this article.

The velocity profiles suggested by the experimental time
responses demonstrate an approximately trapezoidal shape,
which is close to the optimal velocity profile for systems with
acceleration limits [30, 31]. Although the response of the
system in the last phase is affected by frictional forces and
controller gains, the approach phase (the constant velocity
region in the middle of the trapezoidal velocity curve enables
the utilization of a velocity smoothness measure to determine
team coordination level. As an example, Fig. 9 presents the
speed profile of a 230 g object as it is manipulated by the
decentralized controller with a group consisting of 5 agents.
In this figure, the shaded region shows the approach phase.
In other words, a smoother velocity profile in the approach
phase demonstrates a higher coordination level and a contin-
uous cooperative manipulation. In the experiments discussed
in this section, deviations from the mean velocity of the ob-

Fig. 9. Object velocity profile during the manipulation

Table. 4. Root mean squared deviation of velocity profile for
different group population N and different formations

RMSD

N Dec. Cent.

2 0.74±0.08 0.53±0.06

3 0.59±0.06 0.49±0.04

4 0.20±0.03 0.16±0.05

5 0.17±0.02 0.15±0.02

Increments Dec. Cent.

60◦ 0.56±0.06 0.51±0.06

80◦ 0.38±0.06 0.35±0.04

120◦ 0.27±0.03 0.25±0.05

ject, which is a sign of uncoordinated forces in the group, can
be demonstrated by variations in the velocity profiles during
the approach phase. Such deviations can be demonstrated by
utilizing root-mean-square deviation (RMSD), defined as:

RMSD(v) =

√
∑

n
i=1(v̂− vi)

2

n
, (18)

where v̂ is the arithmetic mean of the speed signal v, and n
is the number of data points. This measure is extensively
used in the literature to determine deviations in time series
data [32–35].

Table 4 presents the RMSD for the velocity profiles of
the object in different experiments studying the effect of
group size and formation around the object. Results of this
measurement suggest that by increasing the group popula-
tion or uniformly distributing the agents around the object,
smoother velocity profiles can be achieved, which indicates
higher coordination levels in the system.

4.4.2 Path efficiency
Path efficiency is defined as the ratio of the shortest path

between start and goal points to the distance traveled by the
object [36]. Similar to the analogy used for the velocity pro-
files, path efficiency is a performance index, which shows the
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Table. 5. Path efficiency for different group population N
and different formations

Path Efficiency

N Dec. Cent.

2 0.71±0.05 0.80±0.04

3 0.82±0.04 0.86±0.03

4 0.87±0.03 0.90±0.03

5 0.91±0.04 0.92±0.02

Increments Dec. Cent.

60◦ 0.78±0.07 0.87±0.08

80◦ 0.83±0.05 0.90±0.04

120◦ 0.91±0.02 0.92±0.03

amount of deviation from the shortest path, defined by

ηpath(s) =
‖~xn−~x0‖

n−1

∑
i=0
‖~xi+1−~xi‖

, (19)

where s = {~xi : i ∈ [0,n]} is the set of n data points that are
collected through the experiment. Each data point ~xi = xî+
y ĵ is a point in x-y plane that corresponds to the location of
the object at the instant i.

Table 5 presents the path efficiency values for different
group populations and formations, respectively. The corre-
sponding values are calculated by considering the shortest
path between start and goal positions to be the straight line
that connects the two points. As observed from Table 5, in-
creasing the number of agents will result in higher path ef-
ficiency, which means less deviation from the shortest path
between the start and goal points. Also as discussed before,
as the population increases, the decentralized controller re-
sponse converges to the centralized controller.

Additionally, in a system of three robots and for three
different formations around the object, Table 5 suggests that:
as the agents become more uniformly distributed, the path
efficiency of the system becomes higher. Also, the difference
between centralized and decentralized controllers responses
becomes less obvious as the agents spread more uniformly
around the object. Ultimately, for the uniform distribution of
120◦ increments, the behavior of the decentralized controller
converges to the centralized controller.

4.5 Trajectory tracking
The experiments presented in this manuscript focus on

evaluating the performance of the proposed algorithm in an
obstacle free environment. Clearly, most practical applica-
tions require trajectory tracking as well as simple manipu-
lation. To demonstrate the effectiveness of the method in
trajectory control of the object, an experiment is conducted
with five robots in which they carry a 230 g object along a
sinusoidal path. The results of this experiment are presented

in Figure 10. Although this experiment shows the effective-
ness of the algorithm in trajectory tracking, further extensive
investigations are required to evaluate its performance.
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Fig. 10. Timelapse figure of position and orientation of the
object being moved along a sinusoidal trajectory. Path of the
object center of mass is projected on x-y plane in red. x and y
time responses are plotted in x-t and y-t planes respectively.
The object color gradient, varying from cyan to magenta, il-
lustrates the passage of time. Orientation of the object at
each snapshot is depicted with a black line parallel to its x
axis.

5 Conclusions
This article focused on the derivation and experimen-

tal analysis of a new decentralized algorithm for coopera-
tive multi-robot object manipulation based on an agent-level
force control approach. The presented algorithm utilizes a
local Jacobian, which is defined based on the relative posi-
tion of an agent with respect to the object center of mass
(using a corresponding virtual agent), to distribute the output
of a control function among the agents. Thus, the architec-
ture of the decentralized controller does not require any in-
formation about the population and formation of the group.
Some of the advantages of the proposed decentralized ap-
proach are: 1) In addition to simultaneous position and ori-
entation control of the object through the course of manipu-
lation, the algorithm also provides the means to implement
impedance or force control to allow interaction of the ob-
ject with the environment [37, 38]. 2) Since construction of
the local Jacobians does not require any information about
the population and formation of the group, it eliminates the
need for any inter-agent communication network. This fea-
ture is especially beneficial in real-life implementations with
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large number of robots. 3) Coordination between the agents
is achieved without relying on a group leader which increases
system robustness, and reduces the need for additional algo-
rithmic patches. Consequently, the method could be used as
a backbone for multi-behavioral solutions such as decentral-
ized object avoidance in parallel to manipulation [39].

An extensive set of experiments is conducted to evaluate
the scalability, versatility, and robustness of the proposed de-
centralized algorithm. For this purpose, a new robotic plat-
form, ∆ρ, is designed and fabricated. ∆ρ utilizes a holo-
nomic locomotion system, which provides enough degrees
of freedom to exert forces in any planar direction to the ob-
ject. The experimental setup consists of up to five ∆ρ robots,
which carry payloads up to 600 g (4 times the mass of a
single agent). Efficiency of the algorithm is also evaluated
by defining quantitative metrics of manipulation time, path
efficiency, and deviations in velocity profile. The experi-
ments conducted with different populations and formations
of the group, payload values and agent failures proved the
scalability, versatility, and robustness of the proposed algo-
rithm. As expected, it is observed that the response of the
decentralized controller approaches the response of the cen-
tralized controller as the agent locations get closer to the lo-
cations of the virtual agents. This could be achieved by in-
creasing the number of agents in the system or uniformly
distributing the robots around the object. In general, the de-
centralized approach demonstrates a shorter settling time due
to the fact that the eigenvalues of the transformation matrix
T are directly related to the number of agents involved in
the manipulation task. Moreover, it is observed that an in-
crease in group population results in shorter manipulation
times (higher time-efficiency), smaller steady-state errors,
and reduced deviation in path and velocity profiles (indicat-
ing higher coordination level and path efficiency), which are
predicted by the theoretical model. Experiments with differ-
ent payloads show that an increase in payload causes larger
steady-state errors, which is associated with the balance be-
tween static friction forces and the gains of the PD controller.
An increase in payload also results in a corresponding in-
crease in manipulation time, which is caused by a reduction
in acceleration due to an increase in kinetic friction forces.
It is also observed that when the robots are located close to
each other, the system shows a faster response and a larger
steady-state error, which is due to an increase in the norm
and condition number of the transformation matrix T (as ex-
plained in Section 2.2). In this study, the experiments are
focused on evaluating the performance of the decentralized
controller and the experimental setup is designed to accu-
rately represent the behavior of the swarm system after find-
ing and attaching to the object. Throughout the experiments,
robots use a non-prehensile fixed arm as their end-effector
to apply required planar forces to the object. Adding force
sensing arms to measure the applied forces to the object and
updating local Jacobians based on force feedback, demon-
strating impedance control capabilities of the algorithm, and
extending the method to 3-D space are some of the future
directions in this research.
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