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ABSTRACT
This article details the formulation of a decentralized con-
troller for collective manipulation that does not require any
communication between agents involved in the task. First,
a centralized controller based on the complete system Ja-
cobian is discussed as a benchmark. Then, the centralized
controller is reformulated to obtain the algorithm for the
proposed decentralized control approach. Both, centralized
and decentralized controllers utilize Moore-Penrose pseu-
doinverse to distribute a control action through the agents of
the group. The convergence and stability of both controllers
are discussed in detail. Moreover, robustness and effective-
ness of the proposed controllers are investigated through
simulating numerous scenarios, formations and populations
of the agents. We show that, as the population of the group
increases, the results of the decentralized controller approach
to its centralized counterpart with significantly lower com-
putational cost.

CCS Concepts
•Computer systems organization → Robotic control;
Robotic autonomy; •Computing methodologies→Multi-
agent systems; Cooperation and coordination; Con-
trol methods;

Keywords
Collective manipulation; Decentralized controller; Swarm
robotics

1. INTRODUCTION
Collective manipulation is a solution for manipulating rela-
tively large and heavy objects by utilizing agents that are
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Figure 1: Snapshot of three ∆ρ robots carrying a
four-leaf clover.

incapable of fulfilling the task individually. This behavior
is frequently observed in different insect colonies during the
foraging process. The large prey retrieval of Eciton Burchel-
lii, also known as army ants, is an impressive example of
collective manipulation in nature [1]. Collective manipula-
tion can be employed in a wide range of applications and
has been a research focus in swarm and multi-robot stud-
ies. Applications of collective manipulation include: carry-
ing and assembling parts for automated on-site construction;
object manipulation and assembly in factories; search and
rescue operations in disaster relief actions; and debris collec-
tion. Although utilizing a group of simple agents, compared
to a single well-instrumented agent, increases manipulation
dexterity, reliability, and robustness, it introduces new chal-
lenges on team formation, organization, and control.

Collective manipulation is achievable through two funda-
mental control strategies: centralized control [2, 3, 4] and
decentralized control [5, 6, 7, 8, 9, 10, 11]. The central-
ized control approaches mostly focus on group formations
and manipulation is performed by keeping form- or force-
closure around the manipulated object. While centralized
approaches can guarantee a form of optimality, they suffer
from intense internal communication between agents of the
group. Combined with the large population of the group,
the required level of communication make it impractical to
utilize centralized control approaches in many real life sce-
narios [12].
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Figure 2: Free body diagram of the system and the
associated parameters

Inspired from the rich literature on robotic grasping, grasp
force constraints and optimization [13, 14, 15], the collec-
tive manipulation strategy proposed in this article takes a
different path and focuses on manipulation of an object with
multiple agents assuming that the agents are arbitrarily lo-
cated around the object. Specifically, this article focuses
on the formulation of a Jacobian-based simple decentralized
controller that does not require any prior information about
the size and formation of the group. Thus, none of the
agents is required to communicate any information with the
group. Stability, convergence, and reliability of the proposed
controller is discussed in detail and through numerous sim-
ulated scenarios. In addition, formulation of a force optimal
centralized controller is also discussed and the responses of
the two controllers are compared. It is shown that the de-
centralized controller response converges to the centralized
controller as the population of the team grows larger.

Complete homogeneity of the team members and not requir-
ing any information on the team formation are the main dif-
ferences between the proposed decentralized controller and
similar approaches discussed in [4, 5, 6]. The proposed con-
troller assumes that agents can apply forces to the object
in any direction. Three holonomic robots that are carrying
a four-leaf clover shaped object are shown in Fig.1. Due to
their holonomic structure, the robots are capable of applying
forces in any arbitrary planar direction parallel to the sub-
strate surface without utilizing any active arm mechanisms.
This characteristic makes them a suitable and inexpensive
platform for experimental validation of the proposed algo-
rithm.

The rest of the article is organized as follows. Section 2
discusses mathematical modeling of the system and intro-
duces the parameters used to define the model. Section 3
covers the centralized and decentralized controller designs
followed by a discussion on stability and convergence of the
proposed controllers. The results obtained by applying the
proposed controller to different simulated scenarios and com-
parison between the centralized and decentralized controllers
are presented in Section 4. The paper is concluded with dis-
cussions and future work in Section 5.

2. MODELING
This section covers the derivation of the differential equa-
tions of motion (DEM) for the system under consideration.
Although a reformulation of the proposed controller may
make it applicable to non-rigid and/or 3-D systems, for the
sake of brevity, the manipulated object is considered to be a
rigid body that is constrained to planar motion. Throughout
this manuscript, the vector and coordinate frame notations
are adopted form [16]. Based on these notations, a trans-
formation A from coordinate frame {i} to coordinate frame
{j} is designated by j

iA. Similarly, iv represents the vector
v that defined in coordinate frame {i}. A free body dia-
gram of the overall system is illustrated in Fig. 2. Note that
the coordinate frame {O} is attached to the Center of Mass
(CoM) of the object. The vector Ori defines the position of
the applied force by the ith agent with respect to the CoM
of the object. The position of the ith agent with respect to
the CoM of the object is defined in coordinate frame {O}.
Similar to Ori,

Ofi defines the force applied by the ith agent
to the object in the same coordinate frame. The vector Oed
is the linear error between the desired position and the ob-
ject position. The total error vector, that includes linear
and angular error values, is described by (1).

Oe = O
WR× W e, (1)

where O
WR is the rotation matrix that maps the world co-

ordinate frame {W} to the object frame {O}. Since the
object is constrained to planar motions, O

WR is equal to the
elemental rotation about z axis for θo radians, Rz(θo). The
total error vector in world coordinate frame, W e , is defined
as:

W e =W [(xd − xo).̂i+ (yd − yo).ĵ + (θd − θo).k̂]. (2)

Equations (3) and (4) describe the DEM of an object with
mass of mo and mass moment of inertia of Io written in the
body fixed (non-inertial) reference frame {O}. The vectors
Ovo and Ofi represent the velocity of the object and the
forces applied by each agent, respectively. The position of
the applied force by the ith agent with respect to the CoM
of the object is defined by Ori. This position is also referred
as the agent position throughout this article.

mo(
O v̇o + θ̇o · Ok̂ ×O vo) =

N∑
i=1

Ofi (3)

Ioθ̈o · Ok̂ =

N∑
i=1

Ori ×O fi, (4)

where N represents the total number of agents that are in-
volved in the task. Unless noted otherwise, throughout the
rest of this article, all the vectors are defined in coordinate
frame {O}. Thus, for the sake of brevity, the superscript O
is dropped from vector names in the following sections.

3. CONTROLLER DESIGN
This section starts with formulation of a centralized con-
troller that uses the full Jacobian of the system and Moore-
Penrose pseudoinverse [17] method to distribute a control
function output between the agents of the group. The dis-
cussion is followed by reformulating the proposed central-



Figure 3: Snapshots of a simulation with the decen-
tralized controller. Total of 4 agents are located at
0◦, 90◦, 100◦, 220◦ with respect to Ox axis around the
object (Illustrated with red lines). The desired x,
y and θ values and are illustrated by black dashed
lines. The color-bar indicates time in seconds.

ized controller and converting it into a decentralized con-
troller. Since the decentralized controller does not require
any knowledge on the group population and formation, it
does not need any information exchange between the mem-
bers of the group. Note that the terms “pseudoinverse”
and “Moore-Penrose pseudoinverse” are used interchange-
ably throughout the text.

3.1 Centralized Controller
To derive the centralized controller, the first step is to define
the full Jacobian of the system. As explained in (5), the full
Jacobian is formulated by defining the transformation that
maps all the forces applied by all the agents into a resultant
force and moment that is applied to the CoM of the object.

F = J
[
fT
1 fT

2 · · · fT
N

]T
. (5)

In the above equation, F =
[
Fx Fy Mz

]T
is the vector of

the resultant forces along the x and y axes and the moment
about the z axis of the object coordinate frame, respectively.
The matrix J is the full Jacobian of the system:

J =

 1 0 1 0 · · · 1 0
0 1 0 1 · · · 0 1

−ry1 rx1 −ry2 rx2 · · · −ryN rxN

 , (6)

where rxi and ryi are the x and y components of the vector
ri, respectively. Since the size of J is 3×2N , the overall sys-
tem can either be under-actuated (N = 1) or over-actuated
({N ∈ Z|N ≥ 2}). To hold the focus of the article on multi-
robot and swarm scenarios, it is assumed that N ≥ 2. Note
that one can also derive the Jacobian by writing the differ-
entials of ri vectors with respect to time as a vector-valued
function and taking partial derivatives of this function with
respect to ẋo, ẏo and θ̇o.

The control objective is to define all the fi values such that
the norm of the error approaches to zero in finite time. This
can be achieved by equating F to output of a control func-
tion φ(e). Considering the dynamic behavior of the sys-
tem and to simplify the overall formulation, a Proportional-
Derivative (PD) controller is considered to serve as the con-
trol function φ(e). Note that any linear or nonlinear control
function can be utilized as φ(e) based on the complexity of
the object’s dynamics. Substituting a PD controller for φ(e)
yields:

F = φ(e) = Kpe+Kdė. (7)

The next step is to convert the values obtained for F to the
forces applied by each agent. Since J is not a square ma-
trix, there is no unique solution for the system of equation.
Thus, Moore-Penrose pseudoinverse is utilized to compute
the minimum Euclidean norm solution for fi. Doing so, the
final centralized controller is formulated as:

f = J+φ(e) = J+(Kpe+Kdė), (8)

where J+ is the Moore-Penrose pseudoinverse of the Jaco-
bian matrix J .

3.2 Decentralized Controller
The fundamental idea for the formulation of the decentral-
ized controller is that each agent only relies on a virtual
agent that is located at an arbitrary location around the ob-
ject. It is assumed that each agent only knows a minimal
set of information: its point of attachment to the object,
ri, and the error vector e [5]. Although the virtual agent
i, associated with ith agent, does not necessarily represents
the effect of the rest of the group, it allows the members of
the group to define the necessary control forces to fulfill the
manipulation task. As a result, each agent will have a lo-
cally defined Jacobian Ji. The locations of the virtual agents
need to be defined such that the pseudoinverse of the local
Jacobian matrices yield to a valid solution, as discussed in
detail in the following section. A possible location for the
virtual agent i is on the mirror position of the location of
the ith agent with respect to the CoM of the object. The
local Jacobian, Ji, for each agent is defined as:

Ji =

 1 0 1 0
0 1 0 1

−ryi rxi −ayi axi

 , (9)

where Ji is the Jacobian of the system assumed by agent
i. Parameters axi and ayi are the x and y components of
the position of the ith virtual agent. After defining all the
local Jacobian matrices, the control formulation follows the
discussion in Section 3.1. By applying a PD control function
as φ(e), the final control law for each agent is defined as:

fi = Ji
+φ(e) = Ji

+(Kpe+Kdė), (10)

where Ji
+ is the Moore-Penrose pseudoinverse of the lo-

cal Jacobian matrix Ji. A simulation demonstrating the
proposed decentralized collective manipulation algorithm is
shown in Fig. 3.

3.3 Stability and convergence
For clarity, the proof of the convergence and stability of the
centralized controller is discussed first. Based on (5), the
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Figure 4: Formation of the agents around the object.
The first agent is located on the intersection of Ox
axis with the circumference of the object. The rest
of the agents are located at 18◦ increments.

total force applied to the CoM of the object is equal to the
multiplication of the full Jacobian of the system to the forces
applied by each agent. As described in Section 3.1, the pseu-
doinverse of the full Jacobian matrix is used to distribute
the output of the control function φ(e) between the agents.
Thus, substituting (5) and (8) into (3) and (4) yields:[

mo(v̇o + θ̇o · k̂ × vo)

Ioθ̈o · k̂

]
= J [J+φ(e)]. (11)

Since the rows of the matrix J are linearly independent,
the multiplication of J by its pseudo-inverse results in an
identity matrix (JJ+ = I). Thus, equation (11) reduces to:[

mo(v̇o + θ̇o · k̂ × vo)

Ioθ̈o · k̂

]
= φ(e). (12)

Thus, the convergence and stability of the system directly
related to the definition of the control function φ(e). If φ(e)
guarantees the stability of the object dynamics (as defined
in (3) and (4)), the centralized controller will also be stable
and its response will be the same as the response of the
system that is directly controlled by φ(e).

A similar approach can be followed to analyze the stability
and convergence of the decentralized controller. Rewriting
(12) for the decentralized controller yields:

[
mo(v̇o + θ̇o · k̂ × vo)

Ioθ̈o · k̂

]
= J


K1

K2

...
KN

φ(e), (13)

where Ki is equal to the rows 1 to 2 and columns 1 to 3 of
Ji

+ and it is equal to:

Ki =
1

2<i

[
ki11 ki12 ki13
ki21 ki22 ki23

]
, (14)

where: ki11 = <i+ayi
2−ryi

2, ki12 = −(axi+rxi)(ayi−ryi),
ki13 = 2(ayi − ryi), ki21 = −(axi − rxi)(ayi + ryi),
ki22 = <i + axi

2 − rxi
2, ki23 = −2(axi − rxi), and

<i = (axi − rxi)
2 + (ayi − ryi)

2.

Since
[
K1 K2 · · · KN

]T
is not the pseudoinverse of J ,

the right hand side of (13) will not reduce to φ(e). Thus,
the outputs of the control function φ(e) are mapped to the
forces applied to the CoM of the object by a resultant trans-

Table 1: System parameters

Parameter Value Dimension Description
mo 1 [Kg] Mass
Io 1 [Kg ·m2] Mass moment of inertia
R 0.2 [m] Radius of the object
Kp 10 [N/m] Proportional gain
Kd 5 [Ns/m] Derivative gain

formation T . In other words:

F = J


K1

K2

...
KN

φ(e) = Tφ(e). (15)

As long as the transformation matrix T preserves the conver-
gence and stability of φ(e), the decentralized controller will
be stable and convergent. A necessary, but not sufficient,
condition on matrix T to preserve the behavior of φ(e) is
that all the eigenvalues of T must be positive. Based on
the formulation presented in Section 3.2, the ai vectors can
have any arbitrary value, as long as they generate a valid T
matrix. Here, to reduce the complexity of the system, it is
assumed that a virtual agent for each agent i is located at
its mirror position with respect to the CoM of the object.
Thus: −→ai = −−→ri , yielding:

Ki =
1

2

[
1 0 −ryi/(rxi

2 + ryi
2)

0 1 rxi/(rxi
2 + ryi

2)

]
. (16)

Note that the K matrix for a system composed of only two
agents which are located on the mirror position of each other
will be equal to the pseudo-inverse of the complete Jacobian
of that system. Thus, in this specific case, the decentralized
controller will behave similarly to the centralized controller.
The final step is to substitute the results obtained in (16)
into (15) and perform the multiplication to calculate T . The
transformation matrix T for a group of N agents is equal to:

T =
1

2


N 0 −

N∑
i=1

ryi/(rxi
2 + ryi

2)

0 N
N∑
i=1

rxi/(rxi
2 + ryi

2)

−
N∑
i=1

ryi
N∑
i=1

rxi N

 , (17)

and the corresponding eigenvalues of the matrix T are:

λ =
[
N N + δ N − δ

]
, (18)

where δ is defined as:

δ =

√√√√ N∑
i=1

ryi
rxi2 + ryi2

N∑
i=1

ryi +

N∑
i=1

rxi
rxi2 + ryi2

N∑
i=1

rxi (19)

All the eigenvalues of T are positive if and only if −N < δ <
N . Since the perimeter of the object is finite and bounded,
and the physical agents have a finite and nonzero perimeter,
the growth in population of the group causes the matrix T
to approach to a scaled identity matrix. As a result, all



Figure 5: The response of the system to the decen-
tralized controller based on formations depicted in
Fig.4. The response of the system to the centralized
controller is illustrated with dashed black line. The
color map indicates the number of agents.

the eigenvalues of T remain greater than zero and a stable
mapping is obtained between φ(e) and and F .

4. RESULTS
The system responses to the proposed controllers are simu-
lated by numerical integration of the nonlinear DEM using
the Dormand-Prince method available in MATLAB. The nu-
merical values for system parameters that are used for sim-
ulations are depicted in Table 1. Figure 3 illustrates snap-
shots of a simulation with the decentralized controller and 4
agents that are located at 0◦, 90◦, 100◦, 220◦ with respect
to Ox axis around the object. The desired position is de-
fined to be 1 for all x, y and θ values that are illustrated by
black dashed lines in the figure. The color mapping is used
to depict the passage of time in seconds. As illustrated in
this figure, the decentralized controller can successfully ma-
nipulate the object to the desired position and orientation.

Several formations of the agents around the object are simu-
lated to show the reliability and robustness of the proposed
decentralized controller. The results are also compared with
the centralized controller. As discussed in Section 3.3, as
long as there is no limitation on the forces produced by
each agent, the centralized controller will behave indepen-
dent of the formation and population of the group. Fig.5
shows the simulation results for different formations of the
agents around the object that are controlled by the decen-
tralized controller. As depicted in Fig.4, the agents are lo-
cated around the object with 18◦ incremental angles between
them. The trajectories of the object and its orientations for
the same formations are illustrated in Fig.6. In both Fig.5
and Fig.6, the response and the trajectory of the central-
ized controller are illustrated with black dashed lines. The
color map in these two figures defines the population of the
agents, N . As observed in the figures, As the population
of the agents grows, the response of the decentralized con-

Figure 6: The trajectories of the object for as it is
manipulated by the decentralized controller. The
formation of the agents around the object is de-
picted in Fig.4. The trajectory of the object that is
controlled by the centralized controller is illustrated
with dashed black lines. The color map indicates
the number of agents surrounding the object. The
arrows indicate the orientations of the Ox axis.

troller approaches to the centralized one. This effect is also
observable in (17).

To further analyze the behavior of the proposed controller,
a series of simulations conducted with completely random
formation of the agents around the object. The simulations
started with a group of 4 agents and continued to a group of
20 agents. For each group, total of 20 uniformly distributed
random formations are considered. For each simulation, the
settling time of the response is calculated. Fig.7 illustrates
the results of these simulations. The central red mark of
each box represents the the median of each settling time for
each group population, the edges of the box are the 25th

and 75th percentiles and the whiskers are extended to the
most extreme data points without including outliers. The
outliers are illustrated by red plus markers. As shown in
the figure, as the population of the group gets larger, the
number of outliers reduces. Also the extreme data points
approach to the 25th and 75th percentiles. This indicates
that the reachability and robustness of the system increases
by the growth of the population of the group. The settling
time is defined to be the time where the norm of error vector
remains less than or equal to 0.01 (which is equivalent to
0.57% of the initial norm of the error vector).

5. CONCLUSIONS
This paper described formulation of a centralized and a de-
centralized controllers that are utilizing the jacobian of the
system to distribute the output of a control function be-
tween the agents that are performing a collective manipula-
tion. The proposed decentralized controller does not require
any information about the formation and the population of
the group. As a result, agents do not need to exchange any
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Figure 7: The median, 25th and 75th percentiles, ex-
treme data points and outliers for the settling times
of 20 random formation for each group population.

information and there is no need to have a communication
channel between them. This can highly improve the appli-
cability of the proposed controller for real case scenarios.
The stability and convergence for both controllers is dis-
cussed in detail; and it is shown that as the population of the
group increases, the response of the decentralized controller
approaches to the centralized counterpart. The robustness
and effectiveness of the proposed controller are also studied
through numerous simulations with different group popula-
tions and formations. Although the results are satisfactory,
it is still possible to further increase the efficiency of con-
troller by updating the local jacobians based on feedback
obtained from the dynamics of the object. A simple alter-
ation of the algorithm will make it applicable to 3-D systems
as well. Utilizing real robots to experimentally validate the
performance and stability of the proposed algorithms and
finding a suitable update rule for the local jacobinas are
some of the future works of this research.
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