
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017 1

Adapting to Flexibility: Model Reference Adaptive
Control of Soft Bending Actuators

Erik H. Skorina, Ming Luo, Weijia Tao, Fuchen Chen, Jie Fu, and Cagdas D. Onal

Abstract—Soft pneumatic actuators enable robots to inter-
act safely with complex environments, but often suffer from
imprecise control and unpredictable dynamics. This article
addresses these challenges through the use of model reference
adaptive control, which modulates the input to the plant to
ensure that it behaves similarly to a reference dynamic model.
We use adaptive control to standardize the performance of
soft actuators and eliminate their non-linear behavior. We
implement an adaptive controller chosen for its simplicity
and efficiency, and study the ability of this controller to
force different soft pneumatic actuators to behave uniformly
under a variety of conditions. Next, we formulate an inverse
dynamic feedforward controller, allowing soft actuators to
quickly follow reference trajectories. We test the performance
of the proposed feedforward controller with and without the
adaptive controller, to study its open-loop effectiveness and
highlight the improvements the adaptive controller offers. Our
experimental results indicate that soft actuators can follow
unstructured continuous signals through the use of the proposed
adaptive control approach.

Index Terms—Soft Material Robotics; Robust/Adaptive Con-
trol of Robotic Systems; Hydraulic/Pneumatic Actuators

I. INTRODUCTION

SOFT pneumatic robotics [1]–[7] has many benefits over
traditional robotics. It allows robots to be inherently

compliant, making them safer to physically interact with the
environment. This allows soft robots to operate in collabo-
ration with humans or navigate unstructured environments
without worrying about the effects of a collision.

However, the control of fully soft pneumatic robots rep-
resents a difficult engineering problem [8]. One important
issue is the significant variation exhibited in soft materials.
The same material can exhibit different static and dynamic
properties due to uncertainties in fabrication [9], leading
to unpredictability in soft robotic behavior. In addition,
the dynamics of soft pneumatic actuators is nonlinear and
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involves inherent and varying time delays as pressurized air
flows from the source to the expansion chamber [10].

Controlling the pressure inside soft actuators remains a
challenge. Air flow can be controlled using analog pneumatic
cylinders [3], which are effective but bulky and expensive,
prohibiting their use in a mobile robot with multiple degrees
of freedom. As an alternative, an approximation of pressure
control can be achieved with binary solenoid valves using
a pulse width modulation (PWM) signal [11], [12], while
two independently-controlled solenoid valves can be used
to allow the system to also latch all air flow to maintain
constant pressures inside the soft actuator [7], [13], [14].
These methods are less capable than the pneumatic cylinder
method, but are more conducive to use in mobile robots.

Using PWM valve commands, a nested gain-scheduled
proportional-integral-derivative (PID) controller was pre-
sented in [11], where the outer loop controls position (bend-
ing curvature) and the inner loop controls the pressure
required to reach the desired position, despite with relatively
slow response times. A bang-bang control was presented in
[13] with a variable dead-zone depending on the desired
angle. This allowed rapid signal tracking, despite with a
series of spikes and staircase patterns in tracking error due to
the dead-zone. In our earlier work, we employed the same
PWM method for a more advanced iterative sliding mode
controller on a soft actuated robotic joint [12], where we used
the valve duty cycle as the control input and the joint angle
for feedback. More recently, we updated this motion control
approach using a direct sliding mode controller that regulates
binary valve commands [7], resulting in rapid signal tracking
with minimal overshoot, while in [15] we used a simpler
bang-bang controller, but focus on the dynamics of the entire
body of a soft robotic snake composed of multiple bending
segments in series.

Our work in motion control of soft actuators revealed that
these systems exhibit significant variations in dynamic re-
sponse between prototypes. Model reference adaptive control
[16] (MRAC) is a general control strategy that has been
used on a variety of systems to ensure repeatable operation.
MRAC uses a dynamic model as a reference for the desired
behavior of the plant. It compares the behavior of the plant
and that of the model and modifies the input applied to the
plant so that its behavior matches the model. MRAC has
been applied to the control of a humanoid robot arm driven
by McKibben actuators [17], but the authors focus on the
behavior of the larger rigid linkage system driven by these
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Fig. 1. Our flexible magnetic curvature sensor (a) embedded in our one
degree-of-freedom bidirectional bending actuator segment (b).

soft actuators, where the system settling time is only around
10 seconds.

In this article, we seek to combine these two approaches,
applying MRAC to the control of soft robotic systems. This
is the first time that a model reference adaptive control
has been applied to completely soft systems. We focus on
the MIT Rule adaptive control, the computationally efficient
nature of which allows for easy implementation on embedded
hardware. We examine the viability of this MRAC for mak-
ing different actuators to follow the same linear model track-
ing rapidly changing and dynamic trajectories (up to 2 Hz),
eliminating the need to perform system identification on each
new actuator at each driving frequency, range of pressure
inputs, or curvature outputs. To validate our approach, we
use a feedforward inverse dynamic controller, which uses the
reference dynamic model (enforced by the MRAC) to rapidly
reach a position. As a result, this paper helps advance soft
robot control towards improved repeatability and precision.

II. ACTUATOR DESIGN AND EXPERIMENTAL SETUP

In our previous work [7], we designed a bidirectional
soft bending actuation module with integrated proprioceptive
curvature sensing. This module, as well as a representation
of the curvature sensor, can be seen in Fig. 1. Our custom
magnetic curvature sensor utilizes a magnet and a Hall Effect
sensor each mounted on a flexible circuit board [18]. The
Hall Effect sensor can measure changes in the magnetic
field as the position of the magnet changes due to the
deformation of the substrate, enabling accurate measurement
of the curvature of the system. Our soft bending actuator is
comprised of two soft linear muscles [19] and an inextensible
constraint layer in between. The individual linear actuators
are made of tubes of silicone rubber with engineered cross
sections wrapped in inextensible thread, which causes them
to extend with minimal radial deformation when pressurized.
The constraint layer, with a custom integrated curvature
sensor, inhibits this linear extension, resulting in the bending
of the entire soft module away from the pressurized actuator.
Caps are attached to both ends of the actuator to seal the
chambers and allow for modular connections with other seg-
ments. The caps are made of two acrylic boards sandwiching
the rim of the silicone tube to prevent leaking.

The actuator is driven by two 3-2 (3-port, 2-state) binary
solenoid valves, each connecting one pressure chamber to
a common 8 psi (55 kPa) pressure source. This pressure
value was chosen because it is the highest that the actuators
can withstand continuously. The valves can either inflate or
deflate a given actuator chamber. We control the pressure
in each chamber using a 60 Hz PWM of the valves. We
set the valves to operate in complete antagonism, so when
one chamber is inflating the other is always deflating. Thus,
we can reduce the number of required inputs to one, corre-
sponding to the single (active) degree of freedom (DOF) of
the bending actuator. We have previously observed that the
valves begin to saturate at duty cycles below 20% or above
80%. Thus, we constrained the duty cycles sent to the system
to stay between these two values.

III. SYSTEM IDENTIFICATION

We can treat the dynamic response of the actuator as a
generic second-order system:

ẍ+ a1x+ a2ẋ = bu, (1)

where x is the bending angle of the actuator, u is the
system control input, and a1, a2, and b are constant dynamic
parameters. The first step in building a reference model for
the soft actuator is understanding its nominal performance
under full pressure input. To this end, we characterize the
values for these constant parameters. We note that this model
does not represent the nonlinear system at every pressure
input as we have found previously in [12], but only provides
a starting point for the reference model.

The general solution of the second order system under
constant (step) input is given as:

x(t) = C1e
(−t/τ1) + C2e

(−t/τ2) + C0 (2)

with the boundary conditions x(t = 0) = 0 and ẋ(0) = 0
and where t is time and C0, C1, C2, τ1 and τ2 are constants.
The relationship between the coefficients in (1) and (2) can
be described as follows:

C0 + C1 + C2 = 0

C1/τ1 + C2/τ2 = 0

a1 =
1

τ1τ2

a2 =
1

τ1
+

1

τ2

b =
1

τ1τ2u
C0.

(3)

As this is a constant-input solution, u in (3) is constant.
We collected the trajectory data from a single actuator using
vision tracking software with an input pressure of 8 psi, the
maximum pressure applied to the actuator. We fit (2) via
least-squares to the resulting dynamic trajectory, yielding
time constants τ1 = 0.1107 and τ2 = 0.0021 as well as
coefficients C0 = 0.8366, C1 = −0.8531, and C2 = 0.0165.
To calculate u we assumed that the steady state output of the
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Fig. 2. Three sample trajectories of the system with and without the adaptive control compared to the trajectory of the reference model.

system is a linear function of valve duty cycles between 20%
to 80% and that an 80% duty cycle, being fully saturated,
is equivalent to 8 psi, the pressure used for the experiment.
As 20% would saturate in the opposite direction, and thus
be equivalent to 8 psi in the opposite direction, we shifted
u for purposes of the dynamic model. Our shifted u varied
between -30 and 30 (i.e. u ∈ [−30, 30]). Thus, for system
identification in 3, we used u = 30. Solving these equations,
we get a1 = 4221.8, a2 = 476.4912, and b = 117.74.

IV. MODEL REFERENCE ADAPTIVE CONTROLLER

For embedded operation, the MIT rule provides a com-
putationally efficient approach to formulate an MRAC for
use with our soft actuators, allowing us to standardize
their behavior. This rule introduces an adaptive gain, which
changes the system input to match the system behavior to a
desired model behavior. The equation translating the nominal
input to the system input is as follows:

u = ucθ + 50 (4)

where uc is the nominal input (bounded between -30 and
30), u is the duty cycle input to the physical system (bounded
between 20 and 80), and θ is the adaptive gain. θ is updated
at every experimental time step using the following equation:

θ(n) = θ(n− 1) + γ(x(n)− xm(n))xm(n)∆t (5)

where x is the position (bending angle) of the actuator, xm
is the position of the actuator model, and ∆t is the time step.
xm was calculated using a standard constant-acceleration
model over each time step as follows:

ẍm(n) = −a1mxm(n)− a2mẋm(n) + uc(n)bm (6)

xm(n+ 1) = xm(n) + ẋm(n)∆t+
1

2
ẍm(n)∆t2 (7)

ẋm(n+ 1) = ẋm(n) + ẍm(n)∆t (8)

where a1m, a2m, and bm are the system model parameters
used in the experiment. Thus, the controller constantly keeps
track of the model trajectory and uses it as a reference for the
adaptive controller. As we constrained u to remain between
20 and 80, we also saturate uc to remain within -30 and 30.
This prevents the model from being driven in ways the plant
is incapable of, which would hinder consistency between the
reference model and the experimental plant.

V. INVERSE DYNAMIC CONTROL

We investigated the use of a feed-forward inverse dynamic
controller on our system. Using the dynamics of the system
model, this controller calculates the control input needed for
the system to reach the desired position within a single time
step. It does so by first calculating the acceleration required
to reach the desired position in a single time step, as shown
in the following equation:

ẍR =
xd − 2xm(n) + xm(n− 1)

∆t2
, (9)

where ẍR is the required acceleration and xd is the desired
actuator position. This equation is used to calculate the
required input to the system by solving (1) for uc, resulting
in the following:

uc =
ẍR + a1mxm + a2mẋm

bm
(10)

Under ideal circumstances this controller, which is entirely
open-loop, would allow the system to quickly reach a desired
angle. However, since it uses an imperfect model of the
system to calculate the required inputs, the feedforward
inverse dynamic inputs result in errors in a physical system.
We can address this by using the adaptive controller to ensure
that the behaviors of the dynamic model and the plant match
each other.
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Fig. 3. The mean and standard deviation of the RMS Error between the plant and the reference model.

VI. EXPERIMENTAL RESULTS

For our experiments, we ran our control loop at a constant
1 kHz (thus, ∆t = 0.001). This was set to allow the
constant acceleration discretization (6)-(8) to function, as
a significantly longer time step would cause the constant-
acceleration model to diverge. Because of the nature of the
communication link between our computer and the micro-
controller, we were unable to relay system information at
the control frequency. Thus, data was collected separately at
around 40 Hz.

We arbitrarily modified the identified model of the system
for use in our experiments. For our reference model we set
a1m = 4000 and a2m = 460. These changes created additional
differences between the nominal and desired behavior of
the actuator, allowing us to highlight the strength of our
approach. The value of bm varied between the experiments.

In addition, we implemented an initial delay of 50 ms for
the model. This was to match a similar delay observed in
the behavior of the actuator. The model acceleration in (6)
would not be updated until after the first 50 ms of operation,
after which it would be updated as normal. This significantly
improved the similarity between the plant and the model, as
during that period of inaction by the plant θ would increase
dramatically, causing significant overshoot at a later point.

A. Model Reference Adaptive Control System Results

Our first experiments involved testing the functionality
of the MRAC alone. We applied it under various cases
using a sinusoidal input function with amplitude 20 (in
modified duty-cycle units) as the input uc. We collected
data in each experiment for 30 seconds and calculated the
root-mean-square (RMS) error between the model and the
physical system. We performed this experiment three times
for each of three actuators, three signal frequencies (0.5, 1,
and 2 Hz) and four γ values (0, 0.005, 0.01, and 0.01).
The experiments where γ = 0 represented a control group,
where the adaptive controller does not modify the plant
behavior. For this experiment, we used bm = 80, instead
of the value 117.74 characterized above in Section III. The
reduced bm value helped the continuous dynamic trajectories

Fig. 4. An example of the behavior of the adaptive gain Θ in (5) during
the operation of the Actuator 3. For this plot, the frequency was 0.5 Hz and
γ = 0.02.

of the model be achievable by all of the actuators tested,
regardless of any inconsistencies in their fabrication. We had
previously observed that higher values of bm may result in a
divergence of θ for actuators that physically cannot provide
the desired bending moment under maximum pressure.

Fig. 2 shows three examples of actuator trajectories with
and without adaptation, one for each of the frequencies tested
for γ = 0.005. The MRAC has the best results at 0.5 Hz,
where it can almost perfectly match the model performance
apart from oscillations resulting from valve PWM and sensor
noise. It still must adapt within a single cycle, and the
adaptive trajectory falls behind and then catches up to
the model on the falling component of each period. The
advantages are less apparent for 1 Hz, where the adaptive
trajectory can not compensate fast enough to match both the
peaks and valleys of the trajectory, as the nominal motion
of the actuator is skewed in the negative direction. This is
likely the result of differences in the material properties or
dimensions between each chamber of the actuator, which
were fabricated separately. The same is true for the 2 Hz
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Fig. 5. The results of the open-loop inverse dynamic controller following step functions. (a)-(f) are Actuator 1, (g)-(i) are Actuator 2, and (m)-(s) are
Actuator 3.

Fig. 6. The results of the inverse dynamic controller augmented by the MRAC (γ = 0.02) while following step functions. (a)-(f) are Actuator 1, (g)-(i)
are Actuator 2, and (m)-(s) are Actuator 3.

signal, where there are only slight benefits to the adaptive
control.

We calculated the mean and standard deviation of the
RMS errors between the model and actual trajectories for
all experiments, as illustrated in Fig. 3. From this figure, we
can see that the addition of the proposed adaptive controller
resulted in an improvement for at least one value of γ for all
experiments except Actuator 3 (Fig. 3-C) at 2 Hz. Overall,
γ = 0.005 provided the most consistent improvement over
the actuators and frequencies, though in two cases higher γ
values provided additional improvement (Actuator 1 at 2 Hz
and Actuator 3 at 0.5 Hz).

We isolated an illustrative example of the behavior of the
adaptive gain Θ during actuator operation. We used Actuator

3 at 0.5 Hz using γ=0.02, the results of this can be seen in
Fig. 4. The adaptive gain varies wildly within each sinusoidal
cycle, reaching 1.2 while the actuator is in the positive half
of its cycle and dropping to 0.3 during the negative half. On
the rising part of the signal, a non-linearity in the actuator
causes it to lag behind the model, driving the adaptive gain
up to compensate. This causes it to slightly overshoot, and
the gain drops rapidly to allow the actuator to catch up to
the model as it drops.

B. Inverse Dynamic Controller Results

We tested our inverse dynamic feedforward con-
troller against step functions of various bending angles



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017

Fig. 7. The steady-state results of θ for the adaptive control augmented
inverse dynamic control.

[30◦, 20◦, 10◦,−10◦,−20◦, and −30◦] using each of the
three actuators. To show the advantages of the adaptive
controller, we performed this experiment with and without
adaptive control enabled (γ = 0.02). The higher γ was chosen
because, for step references, rapid convergence is desired.
We chose bm = 100 as it better matched the identified
system model and the application meant we wouldn’t risk
a divergence of θ. In addition, we observed that using a ∆t
of 0.001 in (9) would result in too much input saturation. To
prevent this, we used ∆t = 0.01 and replaced xm(n−1) with
xm(n−10), making for a less exacting trajectory, inherently
reducing the effect of any noise in sensor measurements. The
results of this experiment without adaptation can be seen in
Fig. 5 while the results with adaptation can be seen in Fig. 6.

The inverse dynamic controller can quickly reach a desired
angle, even when operating without any feedback. However,
it does result in some steady-state errors resulting from the
differences between the reference model and the physical
system. The addition of the MRAC allowed the system to
maintain its fast approach while eliminating the steady-state
error. We can also observe that the model and the plant
behave similarly during the approach to the desired angle,
though the plant consistently overshoots before reacquiring
the target angle.

One thing we can observe from the non-adaptive tra-
jectories is that the plant has a tendency to drift slowly
even after the model input has stabilized. This represents
time-variant dynamic behavior which has not been captured
by our model. Fortunately, the adaptive controller is able
to compensate for it. In addition, we can observe that the
steady-state error for the system varies widely with respect
to the desired angle. The model actually gets more accurate
at higher angles, and the errors are significantly different
between the positive and negative sides. This is because
the characterization experiment used a constant input in the
positive direction that resulted in a large angle, so the model
is more accurate in these conditions.

Fig. 8. The behavior of Actuator 1 under user-supplied inputs. MRAC was
used with γ = 0.005.

Fig. 9. The behavior of Actuator 1 under user-supplied inputs. MRAC was
used with γ = 0.02.

We also recorded the steady state value of the adaptive
gain θ for each experiment in Fig. 6. This was done by taking
the mean of the last 20 data points for each experiment after
convergence is observed, and its results can be seen in Fig. 7.
As every experiment converged to the angle specified by the
model, these differences in θ provide a visual representation
of the nonlinearities in the actuator dynamics, as well as
the variation between the behavior of different soft bending
actuators.

C. Unstructured Signal Tracking

Our final experiment was to investigate the performance
of the adaptive controller in tracking unstructured continuous
references. We connected a user input knob to the embedded
controller and mapped its positions to system inputs between
−30◦ and 30◦. A user manipulated the knob, and the system
responded to the input while the MRAC worked to try and
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keep the system in sync with the model. Results of these
trials can be seen in Fig. 8 with γ = 0.005 and Fig. 9 for γ
= 0.02.

Results show that the model and the system behave
similarly, even under the unstructured inputs. We can see the
effect of the lower γ, as in Fig. 8 the system does not respond
fast enough to reach some of the peaks the model does.
In addition, we can observe that the adaptive controller has
difficulty matching the system to the model when the model
is around 0. This is because of the xm term in the adaptive
update equation in (5) indicates that when the model output
is near zero, θ will be updated slowly. Our control method
requires the valves to be constantly operating, with an equal
50% duty cycle for each valve supposedly corresponding
to an angle of 0. Unfortunately, differences between our
actuators can cause this state to have a slight bias (for this
actuator, in the negative direction), something the MIT rule
adaptive MRAC is unable to compensate for.

VII. CONCLUSION

In this paper we formulated a model reference adaptive
controller to ensure that our soft pneumatic bending actuators
exhibit a behavior that is uniformly consistent with that of
a linear system model. We developed and characterized a
simple linear dynamic model of our actuator, which served as
a basis for our reference model. We applied our MRAC to a
range of actuators under a range of frequencies and adaptive
update gains. We found that small update gains allowed
for increased performance in model following, while larger
gains would sometimes cause degradations in performance.
In addition we used the dynamic actuator model to develop
a feed-forward inverse dynamic controller for our actuator to
augment the adaptive controller to ensure accurate position
control of soft pneumatic actuators. We tested this controller
on different actuators against step functions of various am-
plitudes and achieved successful tracking. Finally, we used
unstructured inputs from a user to provide reference positions
for the actuator to track, demonstrating the versatility of the
proposed control approach.

We observed that the adaptive gain θ converged to very
different results depending on where in the workspace the
desired position was located. In particular, it approached
different values depending on if the actuator was bending
in positive or negative directions. This is likely the result of
differences between the two pressure chambers which were
molded separately and then attached together to form the
full actuator. When γ is high, it causes the actuator to over
fit a single half-cycle, resulting in worse performance for
the other half-cycle. This is why increases in γ can cause a
degradation in performance.

We would like to expand this work into a series of
actuators mounted together to form a soft pneumatic tentacle,
each actuator running the same inverse-dynamic feedforward
augmented MRAC. This approach will ensure that each
module behaves as desired, allowing the soft tentacle to

predictably perform manipulation tasks, such as squeezing
into tight spaces and grasping objects therein.
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