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Abstract— Nonlinearities, differential constraints, and input
limitations preclude the use of regular feedback control algo-
rithms in a range of complex dynamic systems. This article
introduces the concept of Regionally Growing Random Trees
(RGRT) as a powerful tool that synergistically combines motion
planning and control tasks. RGRT is a forest of Dynamics-
based Rapidly Expanding Trees (DRETs) that grow in the
state-space of a dynamic system without requiring any distance
function or explicit solutions of the differential equations of
motion. The growth of multiple DRETs results in paths between
the tree roots and forms a roadmap which is utilized in a
planning algorithm to find a feasible path between a current
state and a goal state. A path tracking algorithm is then used to
convert the open-loop commands of the planner into a feedback
controller, which provides robustness against disturbances and
modeling errors. The RGRT motion planning and control
scheme allows complete utilization (instead of avoidance) of
system nonlinearities, which provides solutions for overcoming
actuator constraints and eliminates the limitations imposed on
the system by traditional feedback control approaches.

I. INTRODUCTION

Although the inherent complexity of nonlinear systems
complicate the controller design process, taking advantage of
these nonlinearities provides more elegant solutions for the
control problem. Some of the examples that have been dis-
cussed in the literature are: control of a 2-degree-of-freedom
(DoF) pendulum with a passive shoulder joint known as
Acrobot [1], [2]; control of a pendulum that is connected to
an active cart (also known as cart-pole or inverted pendulum
system) [3], [4]; and aggressive maneuvers of small-scale
quad rotors [5], [6].

From the state-space perspective (for the sake of clarity,
please refer to Section II for detailed definitions of the terms
used in this article), a control action is a manipulation of
state variables from a current state to a goal state through
a specific path. Due to the range of possible control inputs,
the path between the current and goal states is not unique
and is subjected to constraints dictated by system dynamics.
Moreover, for a generic nonlinear system, different control
actions lead to diverse paths in state-space of the system,
in which some may never reach the desired goal state. An
example of such behavior is observed in a simple pendulum
with input torque limitations, as explained in Section III-B.

Utilizing a search algorithm in the state-space may lead
to solutions that overcome specific actuator limitations and
allow taking advantage of nonlinearities to improve system
performance. This type of control is widely observed in
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nature. For instance, when a cardinal bird attempts to perch
on a tree branch, it shapes its wings to a parachute-like form
to generate a rapid speed reduction. Unlike biological flyers,
common aircraft controllers avoid high angles of attack and
stall conditions due to invalidity of linear models in these
nonlinear regions. Although linear models and approxima-
tions work fine for common industrial systems, modern
robotic systems will require more agile and constrained
maneuvers for state to state transitions, due to their high-
dimensional state-space, complex and potentially underactu-
ated dynamics, and interactions with the environment.

A possible method to determine control actions that satisfy
differential and static constraints of the system is to formulate
the control problem as a motion-planning problem. Two
well known approaches that resemble this technique are:
LQR trees [7], [8] and randomized kinodynamic planning
[9]. An LQR tree is a tree of linear quadratic regulators
(LQR) that are constructed by computing the corresponding
stability regions of each regulator. The LQR nodes cover
a controllable subset of the state-space to provide regions
of attraction for the initial conditions of the system. LQR
trees were used in the control of a fixed-wing glider to
perform a bird-like perching maneuver [10], [11] and to
stabilize an Acrobot in the upward configuration [2]. A
similar approach is followed in [6] to demonstrate aggressive
maneuvers with quad rotors. This method treats the control
problem as a set of controllers that are derived based on
system dynamics and each has a specific initial and goal
region. These controllers are then used to control the system
over a family of trajectories that are defined as a sequence
of motions. To account for errors in the dynamic model,
the controller for each trajectory segment is refined through
successive trials. In this class of controllers, the state-space
path is either predefined in forms of position and velocity
profiles or it is a result of a controller that is active for that
specific region of the state-space.

On the other hand, randomized kinodynamic planning
approach [9] focuses on the construction of rapidly exploring
random trees (RRTs) [12] in the state-space of the system.
This approach allows the utilization of system dynamics to
find feasible paths to the goal state. RRT [12] is a specific
subcategory of rapidly exploring dense trees (RDT) [13].
RRT randomly chooses samples from the configuration space
and seeks a path from the closest neighbor on the tree to the
newly sampled point. This approach allows RRT to cover
the space with a relatively uniform distribution [14] if a
suitable sampling technique is used. Thus, the state-space
application of RRT requires two main tools: a controller



that can manipulate any state of the system to the randomly
chosen state; a method to define the distance between two
states. These two requirements make it difficult to apply
kinodynamic planning to systems with complex dynamics.

This article focuses on a different approach to address
the problems associated with existing methods and pro-
poses a synergistic algorithm that combines motion-planning
and control parts into a unified problem. The proposed
algorithm addresses: 1) Searching for a feasible state-space
path between a current state and a goal state (or a goal
region) by utilizing system dynamics and satisfying static and
differential constraints; and 2) Providing robustness against
disturbances and modeling errors as the system advances
through the discovered path. The general structure of the
presented algorithm is composed of two phases. 1) It utilizes
dynamics-based rapidly expanding trees (DRET) to create a
forest of regionally growing random trees (RGRT) to dis-
cover a feasible path between the two states; 2) A simplified
DRET is used to create a local feedback loop, which provides
robustness against disturbances and modeling errors. Since
Phase 2 can be computed in parallel with Phase 1, the
algorithm can constantly seek to find better solutions for
the planning and tracking problems. The further growth of
the DRETs in RGRT forest can help the algorithm to find
probabilistically optimal solutions for planning and control
problems of increasing complexity.

The rest of the article is organized as follows. Section II
discusses the fundamentals of DRET, RGRT forest, and the
tracking feedback loop in detail. Some case studies of the
proposed algorithm are presented in Section III. The paper is
concluded with discussions and future work in Section IV.

II. METHODOLOGY

Before discussing details of the proposed algorithms, a
brief introduction of the terms and notations used in this
manuscript is provided in what follows. These definitions are
used to eliminate possible ambiguities regarding terms used
in the literature. In this article, a state of a system is referred
to a distinct configuration of the system, denoted by x. A
state of a system is a vector of state variables which provides
enough information to predict system behavior in response
to the system inputs. The term space, denoted by S, is the
union of all the states of a system. A configuration space (c-
space or Sc) is a space, in which the state progressions are
governed by a state transition function. It is also assumed
that in a c-space there is a known function, φ(xc, xg), which
returns the necessary system inputs for transitions from a
current to a goal state. The term state-space is specifically
used for systems with a continuous space, in which the state
transition function is a differential equation of the general
form:

ẋ = f(t, x, u), (1)

where ẋ ∈ Rn is a vector of time derivatives of the state
variables for an n dimensional system. Parameter t indicates
time and u is a vector of system inputs. It is assumed that
function φ is unknown or hard to compute in state-spaces.

There are two main approaches for planning problems:
discrete planning and planning in continuous spaces [13].
Although discrete planning algorithms are designed to solve
problems with a countable space, they are also applicable
to continuous space problems by discretization [15], [13],
[16]. This discretization is achieved by overlaying either a
uniform or a geometrically computed grid on top of the space
[17]. The main drawbacks of the discrete planning algorithms
on continuous spaces are grid resolution problems [13] and
the associated curse of dimensionality [18], [13]. On the
other hand, by eliminating the resolution problem, planning
directly in continuous space provides a larger feasible space
for solutions. Also, since the state-space of physical systems
is continuous, planning in continuous-space eliminates the
discretization phase. A class of continuous-space planners
that is widely used in the last decade and has shown promis-
ing practicality is sampling-based algorithms [19]. Due to
their sampling nature, this class of algorithms can avoid
local minima [20], and require less computation by avoiding
explicit construction of obstacle space [21], but they are
only probabilistically complete [22]. RRT and probabilistic
roadmap (PRM) [23] are two of the successful sampling-
based algorithms that are widely used in path planning
problems [24], [25], [20], [19].

RRT is constructed incrementally from vertices that are
randomly drawn from the space, and edges which connect
new vertices to their neighbors on the tree, where each vertex
represents a state and each edge is a path between two
states. Random sampling of states allows RRT to cover the
space with the same probability distribution of the random
number generator used in the algorithm. Thus, the state-
space application of RRT requires a state to state controller
that can traverse the edges between a randomly chosen state
and its closest state on the tree. This requirement imposes
many challenges on the application of RRT in the state-
space of systems with complex dynamics. An alternative is
to construct a tree incrementally by expanding edges from
randomly selected vertices to find new states. Although this
method does not require any controller and edges are created
by simulating system dynamics forward from the chosen
initial states, the resulting tree will be biased toward the old
vertices and hence, grow much slower than an RRT tree.
This behavior is explained in [9]. This article introduces two
methods to eliminate the bias toward specific vertices and to
increase the growth rate of the tree. Similiar to RRT, PRM
samples the space for reachable configurations and tends to
build a roadmap between the samples [26]. The idea behind
PRM forms the basis of RGRT as explained below.

A. Regionally Growing Random Trees (RGRT)

RGRT algorithm combines the concepts of PRM with
RDT. PRM takes random samples from the c-space and
uses a local planner to find paths which connect these
samples to other nearby samples. To use RDTs in state-
space, it is required to find an expansion method that
takes the differential state transition function of the form
(1) into account. This expansion algorithm is explained in



Algorithm 1 Growing a DRET
1: procedure GROW(ψ)
2: i← Γ(N ψ)
3: j ← Nψ + 1
4: uij ← Γ(U)
5: δtij ← Γ([0, δtmax])

6: xnew ←
∫ ti+δtij
ti

f(t, x, uij)dt+ xi
7: if xnew ∈ Xfeasible then
8: vj ← {ti + δtij , xnew, i}
9: ei,j ← {xi, uij , δtij}

10: Nψ ← Nψ + 1
11: return {xnew, ψ}
12: else
13: return {ψ}

Algorithm 1 and a tree that expands based on this algorithm
is called dynamics-based rapidly expanding tree (DRET). A
DRET ψ = {vi, emn},∀i ∈ N ψ and for some m and n in
N ψ is a network with vertices (vi) and edges (emn) defined
as:

vi = {ti, xi, pi}, (2)
emn = {un, δtn}, (3)

where xi is the state vector, ti is the time index, and pi ∈ N+

indicates the index of the parent for vertex i. The edge from
vertex m to vertex n, denoted by emn, is a set composed of
a control action, un and a time difference δtn. The set N ψ

is the set of all vertex indices of ψ and it is defined as:

N ψ = {i ∈ N+ | i ≤ Nψ}, (4)

where Nψ is the total number of vertices of ψ. The root of
ψ is defined as its vertex with index 1 and denoted by R ψ .
For any generic set X , the function Γ(X) chooses a random
sample from the members of X . Finally, Xfeasible ⊂ X
defines the set of all feasible members of X that satisfy all
the imposed constraints.

Algorithm 2 Finding edges between forest trees
1: procedure CONNECTFOREST(F )
2: while κ < 1 ∨ quest = 1 do
3: for all ψn ∈ F do
4: {xnew, ψn} ← GROW(ψn)
5: if ∃R ψ; ‖xnew − xr‖ ≤ ε then
6: Enew ← EDGE(ψn)
7: if C (Enew) < C (En,m) then
8: En,m ← Enew

9: κ = K (F )

10: return F

RGRT is a forest composed of regionally growing DRETs
form root vertices that are randomly sampled from the state-
space. If a leaf of a tree reaches to the vicinity of a root of
another tree, an edge will be created between the two trees.
If the iterative growth of the trees results in an improved path
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Fig. 1. A comparison between the growth of a single DRET tree with
500 vertices (illustrated with yellow color) and a forest of RGRT with 10
tress that each have 50 vertices (illustrated with blue color) for a Double-
Integrator system explained in Section III-A. The roots of the RGRT and
the DRET trees are depicted with red and black crosses, respectively.

between the two trees, the previous path will be replaced by
the more optimal path. This optimality is defined by a cost
function C (En,m) evaluated on the paths between the trees.
Algorithm 2 explains the expansion of the RGRT forest. A
RGRT forest F = {ψi, Emn}, ∀i ∈ N F = {i ∈ N+ | i ≤
NF } and some m and n in N F , is a network in which each
vertex is a DRET tree and each edge Emn is a path that
connects R m to R n.

After the construction of the roadmap, a graph search
algorithm is used to find the optimal path in the forest
between a current and a goal state. If the current or goal
states are not in the set of initial states, the algorithm will
return the path between the closest tree roots to the current
and goal states. A comparison between RGRT and a single
DRET is shown in Fig. 1. In this example, the total number
of vertices in both the RGRT forest and the DRET is 500. As
seen in this figure, RGRT explores a larger space for the same
number of vertices while following the system dynamics.

B. Path Tracking using a Local DRET

Once a path between a current state and a desired state is
discovered, a tracking controller can be used to traverse the
path. Since the discovered path is composed of a sequence
of open-loop inputs and corresponding time intervals, the
modeled system is expected to follow the path exactly using
feedforward commands, and utilizing a feedback loop allows
compensation for disturbances, errors caused by planning
resolution (ε), and modeling deficiencies. The tracking con-
troller uses a local DRET that is only allowed to grow from
its root vertex (current state) and it is biased by the open-
loop action that is already discovered in the planning part as
a feedforward term. The feedback control action is defined to
be the action that minimizes the distance between the current
state, xc, and a point on the planned path xn+1. Details of
the tracking controller are given in Algorithm 3. Once the
state variables approach the desired point within a certain
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Fig. 2. The schematics of the systems that are used as case studies. (a) A
simple mass on a friction-less surface; (b) A pendulum system with a point
mass; (c) A mass-spring system with a nonlinear spring coefficient; (d) The
cart-pole (inverted pendulum) system.

stability region, a traditional feedback controller can take
over and stabilize the system around the desired state.

Algorithm 3 Computing the feedback the current state, xc.
1: procedure CONTROLACTION(xc, P )
2: Us ← {u|u± uo ∈ U}
3: n← k | ∀x ∈ P ‖xc − xk‖ ≤ ‖xc − x‖
4: while i ≤ imax do
5: ui ← Γ(Us)
6: xi ←

∫
δts
f(t, xc, ui)dt+ xc

7: i← i+ 1

8: u∗ = uk| ∀i ‖xk − xc‖ ≤ ‖xi − xc‖
9: return u∗

III. RESULTS AND DISCUSSION

This section describes four case studies of increasing
complexity to investigate the performance and response of
the proposed RGRT control scheme, as depicted in Fig. 2.
Three of the four considered systems have a 2-D state-space
and allow visualization of phase portraits.

A. Double-Integrator

The double-integrator is a second-order linear differential
equation which models the dynamics of a simple mass
under the effect of a time-varying force input in 1-D space.
Two popular examples of double-integrator systems are: a
simple mass moving on a frictionless surface, as depicted
in Fig. 2(a); and a simple satellite which is modeled as a
rotational inertia that is controlled by a pair of thrusters.
The differential equations governing the state transition of a
normalized double-integrator are: ẋ1 = x2 and ẋ2 = u where
u is the input force to the system.
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Fig. 3. Path planning and tracking controller response for a RGRT forest
for the double-integrator system. The dashed lines show the paths between
DRET roots that are close to the initial and goal states. The solid lines
represent the paths followed by utilizing the tracking algorithm from initial
states that are not coinciding with the roots.

The implementation of the algorithm starts with construct-
ing a RGRT forest. After the construction of the forest, it can
be used to find feasible paths between a current and desired
state. Some examples of the discovered path and the response
of the tracking controller are depicted in Fig. 3. The desired
point for all the initial conditions in this figure is x = {0, 0}.
The dashed lines in the phase portrait illustrate the paths that
are discovered from the closest roots to the initial and goal
states. The solid lines represent the paths followed based
on the tracking algorithm from initial conditions that do
not coincide with the roots. As the system state gets close
enough to the desired state (‖xd − x‖ ≤ δ = 0.5), a linear
proportional-derivative (PD) controller (kp = 5, kd = 2)
takes over the tracking control and stabilizes the system. The
parameters used in this simulation are: U ∈ [−1, 1], ε = 0.1,
δtmax = 2, and NF = 15.

B. Pendulum

Another interesting system that can be considered as a
test-bed for the proposed algorithm is a simple pendulum
model. Due to their interesting characteristics, 1-DoF pen-
dulum systems are used in feedback control literature to test
the performance of different controllers [27]. The system
of differential equations which governs the motion of a
pendulum with a massless rod under the effect of an applied
input torque is:

ẋ1 = x2,

ẋ2 =
1

ml2
u− g

l
cos(x1).

(5)

In the above equation, x1 and x2 represent θ and θ̇,
respectively. The input torque is denoted by the control input
u; g is the gravitational acceleration and m is the mass of
the pendulum. Parameter l denotes the distance from the
revolute joint to the center of mass, which is considered to
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Fig. 4. RGRT based motion planning of a pendulum with input torque
limitations. In contrast to PD and PID controllers, RGRT successfully
swings up the pendulum by gaining enough momentum. The desired x1 =
π/2 and x2 = 0 lines are depicted with dashed yellow lines.

be at the center of the pendulum bob. Here, the maximum
input torque is defined to be less than the torque needed to
hold the pendulum at a horizontal configuration (the gravity
induced torque applied to the pendulum is maximum at
θ = (2n−1)π, ∀n ∈ R). Thus, without enough momentum,
the pendulum can not pass through a horizontal configuration
to reach a vertical configuration. This situation will fail most
of the common controllers to control the pendulum to swing
up (θ = π/2) from initial positions below the horizontal line.

In order to test the capabilities of RGRT, three systems
are considered for the swing up control of the pendulum: 1)
A PD controller with hand-tuned coefficients kp = 10 and
kd = 2; 2) A proportional-integral-derivative (PID) controller
with kp = 10, ki = 5, and kd = 2; and 3) Our RGRT
forest control scheme. The responses of each of these control
approaches are illustrated in Fig. 4. As depicted in this figure,
RGRT can successfully swing the pendulum to an upward
position by following a trajectory that allows it to gain
enough momentum and overcome the actuation limitations
while the simple PD and PID controllers fail to pass the
θ = 0 line and cause the system to undergo an oscillatory
motion. The considered pendulum has a mass of 1 kg and
length of 1 m. The RGRT parameters used for this sim-
ulation are: U ∈ [−5, 5], ε = 0.2, δtmax = 1, and NF = 3.
Note that the output of the PD controller at x = {0, x2}T
is u = 〈{kp, kd}, (xd − x)〉 = 5π − 2x2 which is greater
than the maximum input torque (U ∈ [−5, 5] Nm) for
any x2 < 5.3540 rad/s. As observed in Fig. 4, for the
PD controller, x2 does not exceed 1.4 rad/s. Thus the
output of the PD controller saturates by the limits of
the maximum input torque. In addition, for any initial
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Fig. 5. RGRT based motion planning of the nonlinear mass-spring system.
In contrast to a PD controller, RGRT successfully moves the mass to the
desired position. The dashed black line in the top figure illustrates x1 values
where the spring force is maximized. The desired x1 = 4 and x2 = 0 are
depicted with dashed yellow lines.

state xi ∈ {x ∈ R2 | − π/2 < x1 ≤ 0, x2 = 0}, the input
torque, u, will be positive and its value will be saturated
by the maximum input torque. Considering that U ∈ [−5, 5]
which is less than 9.81 Nm (torque required to hold the
pendulum at x1 = 0), the PD controller can not possibly
move the pendulum to the upward configuration regardless
of the gains used.

As observed in Fig. 4, the response of the PD controller
matches with the response of the PID controller. This is due
to the fact that the integral term of the PID controller keeps
increasing. Thus, the output of the controller will remain
saturated by the torque limitations of the system. Due to this
saturation, the control input to the system will remain equal
to the maximum allowable value and it will not behave as a
function of x2. Moreover, since the system model (excluding
the controller) does not have any frictional term, the energy
stored in the system will not dissipate, which results in an
oscillatory response.

In contrast to simple PD or PID controllers, RGRT finds
a path that allows the system to gain enough momentum
to pass the θ = 0 line to reach the upward configuration.
This is observed in the phase portrait of the system depicted
in Fig. 4. Similar to the double-integrator, when the system
state gets within a close neighborhood of the desired state
(‖xd − x‖ ≤ δ = 1), a PD controller (kp = 10 and kd = 2)
takes over the tracking and stabilizes the system.

C. Nonlinear mass-spring system

To further examine the behavior of RGRT, a mass-spring
system with a nonlinear stiffness coefficient is considered.
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The governing differential equations of this system are given
as:

ẋ1 = x2,

ẋ2 =
1

m
(u− ke(−|x1|) sin(x1)),

(6)

where m is the mass and k is the stiffness coefficient. By
taking the derivative of the spring force with respect to x1 it
is observed that the spring force reaches its maximum value
at x1 = π/4 and it is equal to:

fmax =
k
√

2

2
e
(−
π

4
)
. (7)

Similar to the pendulum example, with limitations on the
input force, the system can not pass x1 = π/4 point without
gaining enough momentum. This is observed in the responses
of an RGRT motion planner and a PD controller (kp = 10
and kd = 2) illustrated in Fig. 5. In this simulation, the mass
is considered to be 1 kg and the stiffness gain is assigned to
be 4 N/m. The input force of the system is limited between
-1 and 1 N. As shown in this figure, while the PD controller
fails to move the mass to the desired state (defined as
xd = {4, 0}), RGRT successfully overcomes the input force
limitation by increasing system momentum and eventually
moves the mass to the desired position. The same justification
about the effects of the PD controller gains and utilization of
an integral term that are explained for the pendulum example
(section III-B) are also valid for this nonlinear mass-spring
system. As the system states reach the vicinity of the desired
state (‖xd−x‖ ≤ δ), a PD controller takes over the tracking
controller and stabilizes the system. The parameters used in
the construction of the RGRT forest for this example are
listed as: U ∈ [−1, 1], ε = 0.2, δtmax = 1, and NF = 7.
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Fig. 7. An action-shot of the cart-pole system as it controlled by RGRT
based motion planning for initial condition xi3.

D. Cart-pole

A cart-pole (inverted pendulum) is an under-actuated
system with a 4-D state-space. The governing differential
equations of motion of this system are presented in what
follows. Figure 2(d) illustrates the system schematics and
the parameters used in the differential equations.

ẋ1 = x2,

ẋ2 =
u+ C1

2(M +m sin2(x3))
,

ẋ3 = x4,

ẋ4 =
g sin(x3)(M +m) + C2 − u cos(x3)

l(M +m(1− cos2(x3)))
,

(8)

where x1 = p and x2 = θ. Parameters m and M represent
the mass of the pendulum and the cart, respectively. The
gravitational acceleration is denoted by g and l measures the
length of the pendulum, as depicted in Fig. 2(d). The rest of
the parameters are defined as:

C1 = m(2lx4
2 sin(x3)− x2x4 sin(2x3)− g sin(2x3))

C2 = x2x4 sin(x3)(M +m)− cos(x3)(mlx4
2 sin(x3))

Figure 6 illustrates the behavior of the cart-pole
system with a RGRT control scheme for 4 differ-
ent initial states: xi1 = {1, 0, π/2, 0}, xi2 = {1, 0, 3π/4, 0},
xi3 = {−1, 0,−π/2, 0}, and xi1 = {−1, 0,−3π/4, 0}. Note
that, all these initial conditions represent configurations in
which the pendulum is oriented downward (|θ| ≥ π/2);
Thus, a full state-feedback controller or any other controller
that is derived using a linearized system model around
xd = {0, 0, 0, 0} is not guaranteed to be able to move the
system from the presented initial conditions to the desired
state. This is due to the fact that the linearized models for
sine and cosine functions are not valid for all four quadrants.
But, as depicted in Fig. 6, RGRT can successfully control
the system to the desired state (xd = {0, 0, 0, 0}) from the
discussed initial conditions. In these simulations, the feasible
region for the states are defined as:

x = {x ∈ R4 | |x1| ≤ 3, |x3| ≤ 2π}. (9)



Similar to the other case studies, when the system state
gets within a defined neighborhood of the desired state
(i.e. ‖x3‖ ≤ δ = π/4) a full state feedback controller
u = −K(xd− x) designed based on a linearized model
around xd with K = {−0.41,−1.0,−21, 2,−6.0} takes over
and stabilizes the system. Rest of the parameters that are
used in this simulation are: M = 1 kg, m = 0.1 kg, l = 1 m,
U ∈ [−10, 10], ε = 0.5, δtmax = 1, and NF = 5. An action-
shot of the cart-pole system controlled by RGRT for the
initial condition xi3 is depicted in Fig. 7.

IV. CONCLUSIONS AND FUTURE WORK

This paper discussed the details of solving a control
problem for a generic dynamic system with input limitations
by utilizing a synergistic motion planning and control algo-
rithm, RGRT. The details of the RGRT forest construction
and expansion of DRET tress are discussed in detail. The
proposed control scheme is then used for four different
case studies with 2- and 4-dimensional state-spaces. It is
shown that RGRT can successfully utilize system dynamics
to overcome control input limitations and manipulate the
system from an initial state to a goal state.

Due to its sampling nature, DRETs are also compatible
with systems that have discrete inputs (e.g. fluidic systems
that are controlled by directional valves) or discrete state-
spaces. This allows the utilization of RGRT for a wide
range of applications. As discussed in Section II, solving a
control problem with RGRT is composed of two phases: 1)
expansion of DRET trees and construction of the roadmap
of the forest, which is a pre-processing phase; 2) solving
a planning problem and finding a path between a current
and desired states using the constructed roadmap, which
is performed online. In parallel to the execution of the
second phase, the forest trees can continue expanding to find
improved paths in the forest and substitute the previous paths
with more optimal solutions.

The time required for the pre-processing phase depends
on the expansion rate of DRETs. Thus, improving the DRET
growth algorithm can significantly reduce the pre-processing
time and even allow online construction of the roadmap.
A possible approach to achieve a faster expansion is to
use acceleration profiles that are designed based on system
dynamics and input limitations. Formulation of such profiles
and studying the effect of different horizons on the behavior
of the tracking controller are some of the future work of this
research.
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